Skip to main content
Log in

Accelerating the menaquinone-7 production in Bacillus amyloliquefaciens by optimization of the biosynthetic pathway and medium components

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Menaquinone-7 (MK-7) has an important role in preventing diseases such as cardiovascular disease and osteoporosis. In this study, a combination strategy of strain improvement and medium optimization is investigated to increase MK-7 production in Bacillus amyloliquefaciens. Conventional breeding method was first used to modify the biosynthetic pathway to construct a MK-7 high-producing strain by atmospheric and room temperature plasma mutagenesis and protoplast fusion. The resulted strain Ba-4 with resistance to sulfaguanidine, 1-hydroxy-2-naphthoic acid, menadione, 2-deoxy-d-glucose and rifampicin as well as sensitive to β-fluoropyruvate produced 73.57 ± 1.61 mg/L of MK-7, which was 1.36 times more than that of the parent strain H.β.D.R.-5 (i.e., 31.12 ± 1.40 mg/L). Subsequently, single-factor optimization and response surface methodology (RSM) were used to optimize the medium components for increasing MK-7 production by strain Ba-4. Strain Ba-4 produced 90.43 ± 1.32 mg/L of MK-7 under the single-factor optimized medium. Moreover, the results of response surface methodology indicated that glycerol, soy peptone and Tween-80 had significant effects on MK-7 production, and the highest MK-7 production (i.e., 95.03 ± 1.01 mg/L) was obtained under the optimized medium, which was 0.29 times higher than that of the initial medium. These results confirmed that the conventional breeding methods and fermenter control system are effective strategies in improving MK-7 production by B. amyloliquefaciens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Fujita Y, Iki M, Tamaki J, et al. Association between vitamin K intake from fermented soybeans, natto, and bone mineral density in elderly Japanese men: the Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos Int. 2012;23(2):705–14.

    Article  CAS  PubMed  Google Scholar 

  2. Tsukamoto Y, Kasai M, Kakuda H. Construction of a Bacillus subtilis (natto) with high productivity of vitamin K2 (menaquinone-7) by analog resistance. Biosci Biotechnol Biochem. 2001;65(9):2007–15.

    Article  CAS  PubMed  Google Scholar 

  3. Schurgers LJ, Teunissen KJ, Hamulyak K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood. 2007;109(8):3279–83.

    Article  CAS  PubMed  Google Scholar 

  4. Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336(6086):1306–10.

    Article  CAS  PubMed  Google Scholar 

  5. Le Roux P, Pollack CV Jr, Milan M, Schaefer A. Race against the clock: overcoming challenges in the management of anticoagulant-associated intracerebral hemorrhage. J Neurosurg. 2014;121(Suppl):1–20.

    Article  PubMed  Google Scholar 

  6. Beulens JW, Bots ML, Atsma F, et al. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis. 2009;203(2):489–93.

    Article  CAS  PubMed  Google Scholar 

  7. Cui S, Xia H, Chen T, Gu Y, Lv X, Liu Y, Li J, Du G, Liu L. Cell membrane and electron transfer engineering for improved synthesis of menaquinone-7 in Bacillus subtilis. iScience. 2020;23(3):100918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu W-J, Ahn B-Y. Improved menaquinone (Vitamin K2) production in cheonggukjang by optimization of the fermentation conditions. Food Sci Biotechnol. 2011;20:1585–91.

    Article  CAS  Google Scholar 

  9. Xu J-Z, Zhang W-G. Menaquinone-7 production from maize meal hydrolysate by Bacillus isolates with diphenylamine and analogue resistance. J Zhejiang Univ Sci B. 2017;18(6):462–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu J, Yao Z-L, Yang X-J, Xie K, Liu G-Q. Breeding of high-yield strain of vitamin k2 by protoplast electro fusion. Food Ind. 2012;33(2):80–3 (in Chinese).

    CAS  Google Scholar 

  11. Yang S, Cao Y, Sun L, Li C, Lin X, Cai Z, Zhang G, Song H. Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. ACS Synth Biol. 2019;8(1):70–81.

    Article  CAS  PubMed  Google Scholar 

  12. Liu K, Fang H, Cui F, Nyabako BA, Tao T, Zan X, Chen H, Sun W. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol. 2020;104(14):6363–73.

    Article  CAS  PubMed  Google Scholar 

  13. Berenjian A, Mahanama R, Talbot A, Biffin R, Regtop H, Valtchev P, Kavanagh J, Dehghani F. Efficient media for high menaquinone-7 production: response surface methodology approach. New Biotechnol. 2011;28(6):665–72.

    Article  CAS  Google Scholar 

  14. Luo M-M, Ren L-J, Chen S-L, Ji X-J, Huang H. Effect of media components and morphology of Bacillus natto on menaquinone-7 synthesis in submerged fermentation. Biotechnol Bioprocess Eng. 2017;21:777–86.

    Article  Google Scholar 

  15. Hu X-C, Liu W-M, Luo M-M, Ren L-J, Ji X-J, Huang H. Enhancing menaquinone-7 production by Bacillus natto R127 through the nutritional factors and surfactant. Appl Biochem Biotechnol. 2017;182(4):1630–41.

    Article  CAS  PubMed  Google Scholar 

  16. Xu J-Z, Yan W-L, Zhang W-G. Enhancing menaquinone-7 production in recombinant Bacillus amyloliquefaciens by metabolic pathway engineering. RSC Adv. 2017;7:28527–34.

    Article  CAS  Google Scholar 

  17. Chen L, Chong X-Y, Zhang Y-Y, Lv Y-Y, Hu Y-S. Genome shuffling of Bacillus velezensis for enhanced surfactin production and variation analysis. Curr Microbiol. 2020;77(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Zhang C, Zhou Q-Q, Zhang X-F, Wang L-Y, Chang H-B, Li H-P, Oda Y, Xing X-H. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol. 2015;99(13):5639–46.

    Article  CAS  PubMed  Google Scholar 

  19. Witek-Krowiak A, Chojnacka K, Podstawczyk D, Dawiec A, Pokomeda K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour Technol. 2014;160:150–60.

    Article  CAS  PubMed  Google Scholar 

  20. Yan L, Zhang Z, Zhang Y, Yang H, Qiu G, Wang D, Lian Y. Improvement of tacrolimus production in Streptomyces tsukubaensis by mutagenesis and optimization of fermentation medium using Plackett-Burman design combined with response surface methodology. Biotechnol Lett. 2021;43(9):1765–78.

    Article  CAS  PubMed  Google Scholar 

  21. Huang J, Ou Y, Zhang D, Zhang G, Pan Y. Optimization of the culture condition of Bacillus mucilaginous using Agaricus bisporus industrial wastewater by Plackett-Burman combined with Box-Behnken response surface method. AMB Express. 2018;8(1):141.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ekpenyong M, Asitok A, Antigha R, Ogarekpe N, Ekong U, Asuquo M, Essien J, Antai S. Bioprocess optimization of nutritional parameters for enhanced anti-leukemic l-asparaginase production by Aspergillus candidus UCCM 00117: a sequential statistical approach. Int J Pept Res Ther. 2021;27(2):1501–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Sang Q, Zhang W. Statistical optimization of chitosanase production by Aspergillus sp. QD-2 in submerged fermentation. Ann Microbiol. 2011;62:193–201.

    Article  Google Scholar 

  24. Zhang C, Li Y, Zhang T, Zhao H. Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method. Bioengineered. 2021;12(1):266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cui S, Lv X, Wu Y, Li J, Du G, Ledesma-Amaro R, Liu L. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8(8):1826–37.

    Article  CAS  PubMed  Google Scholar 

  26. Qian J-W, Liu F, Luo M-R, Ke S-L. Study on mutagenesis breeding of l-tryptophan producing strains with sulfonamide resistance method. J Biol. 2012;29(4) (in Chinese)

  27. Sato TYY, Ohtani Y, Mitsui N, Murasawa H, Araki S. Efficient production of menaquinone (vitamin K2) by a menadione-resistant mutant of Bacillus subtilis. J Ind Microbiol Biotechnol. 2001;26(3):115–20.

    Article  CAS  PubMed  Google Scholar 

  28. Keceli SA, Miles RJ. Differential inhibition of mollicute growth: an approach to development of selective media for specific mollicutes. Appl Environ Microbiol. 2002;68(10):5012–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T, et al. 2-Deoxy-d-glucose and its analogs: from diagnostic to therapeutic agents. Int J Mol Sci. 2019;21(1):234.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goldstein BP. Resistance to rifampicin: a review. J Antibiot (Tokyo). 2014;67(9):625–30.

    Article  CAS  PubMed  Google Scholar 

  31. Wu WJ, Ahn BY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7 (vitamin K(2)) production by Bacillus subtilis. J Microbiol Biotechnol. 2018;28(6):902–8.

    Article  CAS  PubMed  Google Scholar 

  32. Mahdinia E, Demirci A, Berenjian A. Effects of medium components in a glycerol-based medium on vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Bioprocess Biosyst Eng. 2019;42(2):223–32.

    Article  CAS  PubMed  Google Scholar 

  33. Sato TYY, Ohtani Y, Mitsui N, Murasawa H, Araki S. Production of menaquinone (vitamin K2)-7 by Bacillus subtilis. J Biosci Bioeng. 2001;91(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  34. Mwesigye PK, Barford JP. Mechanism of sucrose utilisation by Saccharomyces cerevisiae. J Gen Appl Microbiol. 1996;42:297–306.

    Article  CAS  Google Scholar 

  35. Yoshiki Tani SA, Yamada H. Production of menaquinone (vitamin K2)-5 by a hydroxynaphthoate-resistant mutant derived from Flavohacterium meningosepticum, a menaquinone-6 producer. Agric Biol Chem. 1985;49(1):111–5.

    Google Scholar 

  36. Lorenzi V, Muselli A, Bernardini AFO, Berti L, Pagès J-M, Amaral L, Bolla J-M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob Agents Chemother. 2009;53(5):2209–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Unnanuntana A, Bonsignore L, Shirtliff ME, Greenfield EM. The effects of farnesol on Staphylococcus aureus biofilms and osteoblasts. An in vitro study. J Bone Jt Surg Am. 2009;91(11):2683–92.

    Article  Google Scholar 

  38. Zhang J, Wang YL, Lu LP, Zhang BB, Xu GR. Enhanced production of Monacolin K by addition of precursors and surfactants in submerged fermentation of Monascus purpureus 9901. Biotechnol Appl Biochem. 2014;61(2):202–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshiki Tani HT. Excretion of menaquinone-4 by a mutant of Flavobacterium sp. 238-7 in a detergent-supplemented culture. Agric Biol Chem. 1988;52(2):449–54.

    Google Scholar 

  40. Li F, Zhu L. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01. Bioresour Technol. 2012;123:42–8.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao Z, Selvam A, Wong JW. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresour Technol. 2011;102(5):3999–4007.

    Article  CAS  PubMed  Google Scholar 

  42. Kim BS, Kim H-R, Hou CT. Effect of surfactant on the production of oxygenated unsaturated fatty acids by Bacillus megaterium ALA2. New Biotechnol. 2010;27(1):33–7.

    Article  CAS  Google Scholar 

  43. Zeng G-M, Shi J-G, Yuan X-Z, Liu J, Zhang Z-B, Huang G-H, Li J-B, Xi B-D, Liu H-L. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme Microb Technol. 2006;39(7):1451–6.

    Article  CAS  Google Scholar 

  44. Frey DD, Engelhardt F, Greitzer EM. A role for “one-factor-at-a-time” experimentation in parameter design. Res Eng Des. 2003;14(2):65–74.

    Article  Google Scholar 

  45. Vatanara A, Rouholamini Najafabadi A, Gilani K, Asgharian R, Darabi M, Rafiee-Tehrani M. A Plackett-Burman design for screening of the operation variables in the formation of salbutamol sulphate particles by supercritical antisolvent. J Supercrit Fluids. 2007;40(1):111–6.

    Article  CAS  Google Scholar 

  46. Imandi SBKS, Garapati HR. Use of Plackett-Burman design for rapid screening of nitrogen and carbon sources for the production of lipase in solid state fermentation by Yarrowia lipolytica from mustard oil cake (Brassica napus). Braz J Microbiol. 2014;44(3):915–21.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gao X, Yan P, Liu X, Wang J, Yu J. Optimization of cultural conditions for antioxidant exopolysaccharides from Xerocomus badius grown in shrimp byproduct. Biomed Res Int. 2016;2016:2043787.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Sun X, Wang L, Wu H, Zhao G, Liu H, Wang P, Zheng Z. Coproduction of menaquinone-7 and nattokinase by Bacillus subtilis using soybean curd residue as a renewable substrate combined with a dissolved oxygen control strategy. Ann Microbiol. 2018;68:655–65.

    Article  Google Scholar 

  49. Zhang C, Ren H, Zhong C. Economical production of vitamin K2 using wheat starch wastewater. J Clean Prod. 2020;270: 122486.

    Article  CAS  Google Scholar 

  50. Zhang C, Wu D, Ren H. Economical production of vitamin K2 using crude glycerol from the by-product of biodiesel. Sci Rep. 2020;10(1):5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shuai Liu from Henan Julong Biological Engineering Co., LTD. for assistance in the fermentation experiment, and we would like to thank editage (http://www.editage.cn) for editing the English text of a draft of this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (no. 32271534), the National Key Research and Development Program of China (2021YFC2100900), the Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions, the 111 project (Grant number 111-2-06).

Author information

Authors and Affiliations

Authors

Contributions

CL, WZ and JX conceived the experiments. CL and ML designed and performed the experiments and analyzed the data. CL and JX wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian-Zhong Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors agreed to publish this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CL., Li, M., Zhang, WG. et al. Accelerating the menaquinone-7 production in Bacillus amyloliquefaciens by optimization of the biosynthetic pathway and medium components. Syst Microbiol and Biomanuf 3, 776–791 (2023). https://doi.org/10.1007/s43393-023-00157-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00157-4

Keywords

Navigation