Skip to main content
Log in

Molecular modification of Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase and preparation of α-cyclodextrin

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Cyclodextrin (CD) is produced by the catalysis of starch or starch derivatives by cyclodextrin glucosyltransferase (CGTase), and its yield is mainly limited by the product and reaction specificity of CGTase. In this study, we use CGTase derived from Bacillus stearothermophilus NO2, exhibiting high expression levels and good stability for molecular modification. The N353A mutant effectively decreases the hydrolysis activity, and the ratio of the kcat values (cyclization to hydrolysis activity) is 86.46, which is threefold that of the wild type. The E142P mutant effectively enhances α-CD specificity, which increases the ratio of kcat values (α-CD to β-CD formation) from 2.18 of the wild-type to 2.42. The N353A/E142P mutant weakens the hydrolysis side reaction and enhances α-CD specificity, and the proportion of α-CD products is 53.67%, which is 15.62% higher than that of the wild-type. This research focuses on CGTase reaction and product specificities, which suggest a novel method for the industrial production of α-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98(5):1743–54. https://doi.org/10.1021/cr970022c.

    Article  CAS  PubMed  Google Scholar 

  2. Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications. Appl Microbiol Biotechnol. 2005;66(5):475–85. https://doi.org/10.1007/s00253-004-1781-5.

    Article  CAS  PubMed  Google Scholar 

  3. Veen B, Uitdehaag J, Leemhuis H, Dijkhuizen L. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol. 2002;94(2):137–55. https://doi.org/10.1016/S0168-1656(01)00407-2.

    Article  PubMed  Google Scholar 

  4. Li Z, Chen S, Gu Z, Wu J. Alpha-cyclodextrin: enzymatic production and food applications. Trends Food Sci Technol. 2014;35(2):151–60. https://doi.org/10.1016/j.tifs.2013.11.005.

    Article  CAS  Google Scholar 

  5. Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of a-amylase-related proteins. Protein Eng Des Sel. 2006;19(12):555–62. https://doi.org/10.1093/protein/gzl044.

    Article  CAS  PubMed  Google Scholar 

  6. Leemhuis H, Kelly RM, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol. 2009;85(4):823–35. https://doi.org/10.1007/s00253-009-2221-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang L, Duan X, Wu J. Enhancing the alpha-cyclodextrin specificity of cyclodextrin glycosyltransferase from Paenibacillus macerans by mutagenesis masking subsite-7. Appl Environ Microbiol. 2016;82(8):2247–55. https://doi.org/10.1128/AEM.03535-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li C, Gu Z, Hong Y, Cheng L, Li Z. Alcohol complexing agents influence bacterial α-cyclodextrin production. LWT. 2021. https://doi.org/10.1016/j.lwt.2020.110031.

    Article  Google Scholar 

  9. Kelly RM, Leemhuis H, Dijkhuizen L. Conversion of a cyclodextrin glucanotransferase into an alpha-amylase: assessment of directed evolution strategies. Biochemistry. 2007;46(39):11216–22. https://doi.org/10.1021/bi701160h.

    Article  CAS  PubMed  Google Scholar 

  10. Veen B, Uitdehaag J, Dijkstra BW, Dijkhuizen L. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochem Biophys Acta. 2000;1543(2):336–60. https://doi.org/10.1016/S0167-4838(00)00233-8.

    Article  PubMed  Google Scholar 

  11. Kelly RM, Dijkhuizen L, Leemhuis H. The evolution of cyclodextrin glucanotransferase product specificity. Appl Microbiol Biotechnol. 2009;84(1):119–33. https://doi.org/10.1007/s00253-009-1988-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song B, Yue Y, Xie T, Qian S, Chao Y. Mutation of tyrosine167histidine at remote substrate binding subsite 6 in α-cyclodextrin glycosyltransferase enhancing α-cyclodextrin specificity by directed evolution. Mol Biotechnol. 2014;56(3):232–9. https://doi.org/10.1007/s12033-013-9699-8.

    Article  CAS  PubMed  Google Scholar 

  13. Veen B, Uitdehaag J, Penninga D, Alebeek G, Smith LM, Dijkstra BW, Dijkhuizen L. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. J Mol Biol. 2000;296(4):1027–38. https://doi.org/10.1006/jmbi.2000.3528.

    Article  CAS  PubMed  Google Scholar 

  14. Xm T. Molecular modification of Bacillus stearothermophilus NO2 CGTase for AA-2G synthesis. Wuxi: Jiangnan University; 2020.

    Google Scholar 

  15. Tao X, Su L, Wang L, Wu J. Improved production of cyclodextrin glycosyltransferase from Bacillus stearothermophilus NO2 in Escherichia coli via directed evolution. Appl Microbiol Biotechnol. 2020;104(1):173–85. https://doi.org/10.1007/s00253-019-10249-8.

    Article  CAS  PubMed  Google Scholar 

  16. Kong D, Wang L, Su L, Wu J. Effect of Leu277 on disproportionation and hydrolysis activity in Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase. Appl Environ Microbiol. 2021. https://doi.org/10.1128/AEM.03151-20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tao X, Su L, Wu J. Enhanced 2-O-alpha-d-glucopyranosyl-l-ascorbic acid synthesis through Iterative saturation mutagenesis of acceptor subsite residues in Bacillus stearothermophilus NO2 cyclodextrin glycosyltransferase. J Agric Food Chem. 2018;66(34):9052–60. https://doi.org/10.1021/acs.jafc.8b03080.

    Article  CAS  PubMed  Google Scholar 

  18. Olsson M, Rostkowski M, Jensen JH. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput. 2011;7(2):525–37. https://doi.org/10.1021/ct100578z.

    Article  CAS  PubMed  Google Scholar 

  19. Bok JW, Keller NP. Fast and easy method for construction of plasmid vectors using modified quick-change mutagenesis. Methods Mol Biol. 2012. https://doi.org/10.1007/978-1-62703-122-6_11.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lejeune A, Sakaguchi K, Imanaka T. A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (α-cyclodextrin) glucanotransferase. Anal Biochem. 1989;181(1):6–11. https://doi.org/10.1016/0003-2697(89)90385-0.

    Article  CAS  PubMed  Google Scholar 

  21. Mäkelä M, Korpela T, Laakso S. Colorimetric determination of β-cyclodextrin: two assay modifications based on molecular complexation of phenolphatalein. J Biochem Biophys Methods. 1987;14(2):85–92. https://doi.org/10.1016/0165-022X(87)90043-1.

    Article  PubMed  Google Scholar 

  22. Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. J Geophys Res Atmos. 1969;74(27):6696–701. https://doi.org/10.1029/JB074i027p06696.

    Article  Google Scholar 

  23. Kelly R, Leemhuis H, Rozeboom H, Dijkstra B, Dijkhuizen L. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J. 2008;413(3):517–25. https://doi.org/10.1042/BJ20080353.

    Article  CAS  PubMed  Google Scholar 

  24. Uitdehaag J, Veen B, Dijkhuizen L, Dijkstra BW. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme Microb Technol. 2002;30(3):295–304. https://doi.org/10.1016/S0141-0229(01)00498-7.

    Article  CAS  Google Scholar 

  25. Li Z, Zhang J, Wang M, Gu Z, Du G, Li J, Wu J, Chen J. Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing α-cyclodextrin specificity. Appl Microbiol Biotechnol. 2009;83(3):483–90. https://doi.org/10.1007/s00253-009-1865-3.

    Article  CAS  PubMed  Google Scholar 

  26. Li Z, Gu Z, Li C, Hong Y, Cheng L. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Carbohydr Polym. 2014;108:112–7. https://doi.org/10.1016/j.carbpol.2014.03.015.

    Article  CAS  PubMed  Google Scholar 

  27. Xie T, Song B, Yue Y, Chao Y, Qian S. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602–1. J Biotechnol. 2014;170:10–6. https://doi.org/10.1016/j.jbiotec.2013.10.032.

    Article  CAS  PubMed  Google Scholar 

  28. Bissaro B, Monsan P, Fauré R, O’Donohue M. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J. 2015;467(1):17–35. https://doi.org/10.1042/BJ20141412.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (31730067 and 31972032), Agricultural Independent Innovation Fund of Jiangsu Province (CX(21)3039), and Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX21-2025) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chen.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 963 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Su, L., Kong, D. et al. Molecular modification of Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase and preparation of α-cyclodextrin. Syst Microbiol and Biomanuf 2, 695–704 (2022). https://doi.org/10.1007/s43393-022-00099-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00099-3

Keywords

Navigation