Skip to main content

Advertisement

Log in

Enzymatic digestibility of pretreated dewaxed bamboo residues as feedstock for bioethanol production

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Due to abundant availability, biofuel production from bamboo residues is gaining popularity. Bamboo biomass and its residues are widely available in the north-eastern part of India, which can be sustainably exploited for green energy production. The aim of the present study was to evaluate the pretreatments of dewaxed bamboo residues with dilute alkali (NaOH), and dilute acid, and the effect of pretreatment on biomass hydrolysis was performed with a commercial enzyme (Zytex). Results showed that maximum fermentable sugars were 490 mg/g obtained from 10% biomass with 0.6% (w/v) of alkali, and acid pretreated biomass produced 320 mg/g of sugars from 2% (w/v) acid with 10% biomass. Changes in biomass structure during the pretreatment process are correlated with FTIR, SEM, and component analysis for lignin, cellulose, and hemicelluloses. Fermentation studies of the hydrolysate showed that the yield of ethanol was 77% of the theoretical maximum at 36 h. Results indicate the scope of utilization of bamboo residues as substrates for biofuels, and alkaline pretreatment is an effective pretreatment process for bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Ummalyma SB, Sahoo D, Pudiyamadam A, Adarsh VP, Sukumaran RK, Bhaskar T, Parida A. Sono-assisted alkali and Dilute acid Pretretment of Phragmiteskarka (Tall Reed Grass) to enhance enzymatic digestibility for bioethanol conversion. Front Energy Res. 2021;8:5994452.

    Article  Google Scholar 

  2. Puthiyamadam A, Adarsh VP, Mullepureddy KK, Mathew A, Kumar J, Yenumala SR, Bhaskar T, Ummalyma SB, Sukumaran RK. Evaluation of a wet biomass processing strategies for mixed phumdi biomass conversion to bioethnaol. Bioresour Technol. 2019;289:121633.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang K, Li H, Xiao LP, Wang B, Sun RC, Song G. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresour Technol. 2019;285:121335.

    Article  PubMed  CAS  Google Scholar 

  4. Yuan Z, Wen Y, Kapu NS. Ethanol production from bamboo using mild alkaline pre-extraction followed by alkaline hydrogen peroxide pretreatment. Bioresour Technol. 2018;247:242–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu JF, Cao Y, Yang MH, Wang XJ, Li HQ, Xing JM. Enhanced saccharification of lignocellulosic biomass with 1-allyl-3-methylimidazolium chloride (AmimCl) pretreatment. Chin Chem Lett. 2014;25:1485–8.

    Article  CAS  Google Scholar 

  6. Narron RH, Han Q, Park S, Chang HM, Jameel H. Lignoceric analysis of a carbohydrate-producing lignocellulosic biorefinery process. Bioresour Technol. 2017;241:857–67.

    Article  CAS  PubMed  Google Scholar 

  7. Awasthi A, Singh G, Dhyani V, Kumar J, Sudhakara Reddy Y, Adarsh VP, Puthiyamadam A, Sukumaran RK, Sahoo D, Ummalyma SB. Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresour Technol. 2019;174:121308.

    Article  CAS  Google Scholar 

  8. Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A. Bioethanol production from dilute acid pretreated Indian Bamboo variety (Dendracalamus sp.) by separate hydrolysis and fermentation. Ind Crops Prod. 2014;52:169–76.

    Article  CAS  Google Scholar 

  9. Gao H, Wang Y, Yang Q, Li Y, Zhan D, Wei H, Lu H, Bakr MMA, El-Sheekh MM, Qi Z, Peng L, Lin X. Combined steam explosion and optimized green liquor pretreatments are effective for complete saccharification to maximize bioethanol production by reducing lignocelluloses recalcitrance in one year old bamboo. Renew Energ. 2021;175:1069–79.

    Article  CAS  Google Scholar 

  10. Kumar S, Gujjala LKS, Banerjee R. Stimultaneous pretreatment and saccharification of bamboo for biobutanol production. Ind Crops. 2017;101:21–8.

    Article  CAS  Google Scholar 

  11. Littlewood J, Wang L, Turnbull C, Murphy RJ. Techno-economic potential of bioethanol from in China. Biotechnol Biofuels. 2013;6:1.

    Article  Google Scholar 

  12. Xin DL, Yang Z, Liu F, Xu XR, Zhang JH. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour Technol. 2015;174:529–36.

    Article  CAS  Google Scholar 

  13. Shen ZH, Zhang KJ, Si MY, Liu MR, Zhuo SN, Li D, Ren LLX, Shi Y. Synergy of lignocelluloses pretreatment by Sodium Carbonate and bacterium to enhance enzymatic hydrolysis of rice straw. Bioresour Technol. 2018;249:159–60.

    Article  CAS  Google Scholar 

  14. Li WX, Xiao WZ, Yang YQ, Wang Q, Chen X, Xiao LP, Sun., R.C. Insights into bamboo delignification with acidic deep eutectic solvents pretreatment for enhanced lignin fractionation and valorization. Ind Crops Prod. 2021;170:113692.

    Article  CAS  Google Scholar 

  15. Yang H, Jin Y, Shi Z, Wang D, Zhao P, Yang J. Effect of hydrothermal pretreated bamboo lignin on cellulose saccharification for bioethnaol production. Ind Crops Prod. 2020;156:112865.

    Article  CAS  Google Scholar 

  16. Yang H, Shi Z, Xu G, Qin Y, Deng J, Yang J. Bioethanol production from bamboo with alkali catalyzed liquid hot water pretreatment. Bioresour Technol. 2019;274:261–6.

    Article  CAS  PubMed  Google Scholar 

  17. Karimi K, Taherzadeh MJ. A critical review on analysis of pretreatment of lignocellulose: degree of polymerization, adsorption/ desorption, and accessibility. Bioresour Technol. 2016;203:348–56.

    Article  CAS  PubMed  Google Scholar 

  18. Tri CL, Khuong LD, Kamei I. Improvement of sodium hydroxide pretreatment in bioethanol production from Japanese bamboo Phyllostachys edulis using the white rot fungus Phlebia sp. MG-60. Int Biodeterior Biodegra. 2018;133:86–92.

    Article  CAS  Google Scholar 

  19. Wang S, Lia F, Zhang P, Jin S, Tao X, Tang X, Ye J, Nabi M, Wang H. Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energ Convers Manage. 2017;149:409–15.

    Article  CAS  Google Scholar 

  20. Huang Y, Jeuck B, Du J, Yong Q, Jameel H, Philips R. Novel process for the conduction of xylo-oligosachharides, fermentable sugars, lignosulfonates from hard wood. Bioresour Technol. 2016;219:600–7.

    Article  CAS  PubMed  Google Scholar 

  21. Kassye S, Pant KK, Jain S. Hydrolysis cellulosic bamboo biomass into reducing sugars via a combined alkaline solution and ionic liquid pretreatment step. Renew Energ. 2017;104:177–84.

    Article  CAS  Google Scholar 

  22. Chen XW, Kuhn E, Jenning EW, Nelson R, Tao L, Zhang M, Tucker MP. DMR (deactylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentration (230g/1-1) during enzymatic hydrolysis and high ethanol concentrations (>10%v/v) during fermentation without hydrolysate purification or concentration. Energ Environ Sci. 2016;9(4):127–1245.

    Article  CAS  Google Scholar 

  23. Li Y, Qi BK, Luo JQ, Wan YH. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis. Bioresour Technol. 2016;200:272–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang W, Peng H, Li H, Xu J. Effect of acetylation/ deacetylation on enzymatic hydrolysis of corn stalk. Biomass bioenergy. 2014;71:294–8.

    Article  CAS  Google Scholar 

  25. Li Z, Jiang Z, Fei B, Cai Z, Pan X. Comparison of bamboo green, Timber, and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatment for enzymatic saccharification. Bioresour Technol. 2014;151:91–9.

    Article  CAS  PubMed  Google Scholar 

  26. Sahoo D, Ummalyma SB, Okram AK, Sukumaran RK, George E, Pandey A. Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. Bioresour Technol. 2017;242:133–8.

    Article  CAS  PubMed  Google Scholar 

  27. Behara S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconve0rsion of lignocellulosic biomass. Renew Sust Energy Rev. 2017;36:91–106.

    Article  CAS  Google Scholar 

  28. Qi G, Peng F, Xiong L, Lin X, Huang C, Li H, Chen X, Chen X. Extraction and characterization of wax from sugarcane bagasse and enzymatic hydrolysis of dewaxed sugarcane bagasse. Prep Biochem Biotechnol. 2017;47(3):276–81.

    Article  CAS  PubMed  Google Scholar 

  29. Leavitt S, Denzer S. Method for batch processing small wood samples to holocellulose for stable-carbon isotope analysis. Anal Chem. 1993;65(1):87–8.

    Article  CAS  Google Scholar 

  30. Miller GM. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–8.

    Article  CAS  Google Scholar 

  31. Sluiter A, Hanmes B, Ruiz R, Scralata C, Sluiter J, Templeron D. Determination of carbohydrates and lignin in biomass. NREL/TO-510–42618, Laboratory analytical procedure (LAP), National Renewable Energy Laboratory; 2011

  32. Udeh BA, Erkurt EA. Compositional and structural changes in Phoenix canariensis and Opuntiaficus-indica with pretreatment: Effect on enzymatic hydrolysis and second generation ethanol production. Bioresour Technol. 2017;224:702–7.

    Article  CAS  PubMed  Google Scholar 

  33. Santos CC, De Souza W, Anna CS, Brienzo M. Elephant grass leaves have lower recalcitrance to acid pretreatment than stems, with higher potential for ethanol production. Ind Crops Prod. 2018;111:193–200.

    Article  CAS  Google Scholar 

  34. Kuttiraja M, Sindhu R, Varghese PE, Sandhya SV, Binod P, Vani S, Pandey A, Sukumaran RK. Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass Bioenery. 2013;59:142–50.

    Article  CAS  Google Scholar 

  35. Sun XF, Xu F, Sun RC, Fowler P, Baird MS. Characteristics of degrade cellulose obtained from stem exploded wheat straw. Carbohyd Res. 2005;340:97–106.

    Article  CAS  Google Scholar 

  36. Bodirlau R, Teaca CA, Spiridon I. Influence of ionic liquid on hydrolyzed cellulose material: FT-IR spectroscopy and TG-DTG-DSC analysis. Int J Polym Anal Charact. 2010;15(7):460–9.

    Article  CAS  Google Scholar 

  37. Chung C, Lee M, Choe EK. Characterization of cotton fabric scouring by FTIRATR spectroscopy. Carbohydr Polym. 2004;58:417–20.

    Article  CAS  Google Scholar 

  38. Zhang JG, Li QL, Wei ZJ. Degradation of bamboo-shoot shell powder by a fungal consortium: changes in chemical composition and physical structure. IntBiodeterior Biodegra. 2017;116:205–10.

    Article  CAS  Google Scholar 

  39. Cheng L, Adhikari S, Wang Z, Ding Y. Characterization of bamboo species at different ages and bio-oil production. J Anal Appl Pyrol. 2015;116:215–22.

    Article  CAS  Google Scholar 

  40. Darbant A, Haruthaithansan M, Atkla W, Phudphing T, Thanavat E, Haruthaithanasan K. Bamboo biomass yield and feedstock characteriztics of energy plantation in Thailand. Energy Procedia. 2014;59:134–41.

    Article  Google Scholar 

  41. Akanksha K, Prasad A, Sukumaran RK, Nampoothiri M, Pandey A, Rao SS, Binod P. Dilute acid pretreatment and enzymatic hydrolysis of sorghum biomass for sugar recovery-A statistical approach. Indian J Experi Biol. 2014;52:1082–9.

    Google Scholar 

  42. Paulraj Gundupalli M, Cheng YS, Chuetor S, Bhattacharyya D, Sriariyanun M. Effect of dewaxing on saccharification and ethanol production from different lignocellulosic biomass. Bioresour Technol. 2021;339:125596.

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Aparicio M, Parawira W, Van Rensburg E, Diedericks D, Galbe M, Rosslander C, Zacchi G, Gorgens J. Evaluation of steam treated giant bamboo for production of fermentable sugars. Biotechnol Progress. 2011;27:641–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rajeev K. Sukumaran and his group, Microbial Process and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, for their extensive help with the characterization of biomass and the Director, IBSD, for his motivation and support (IBSD Manuscript No. IBSD/2020/01/061).

Funding

No funding was received to assist with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SBU: conceptualization, designing the work, experiments, analysis, and writing of original manuscript. VK and AS: assisting for conducting the experiment.

Corresponding author

Correspondence to Sabeela Beevi Ummalyma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors are mutually agreed to publish the work in this journal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ummalyma, S.B., Baibhav, K. & Singh, A. Enzymatic digestibility of pretreated dewaxed bamboo residues as feedstock for bioethanol production. Syst Microbiol and Biomanuf 2, 716–722 (2022). https://doi.org/10.1007/s43393-022-00092-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00092-w

Keywords

Navigation