Skip to main content
Log in

Heterologous expression, refolding, and characterization of a calcium-independent phospholipase A1 from Streptomyces albidoflavus

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Phospholipase A1 (PLA1) is a member of the hydrolase family with applications in various fields, especially in the food industry. A calcium-independent PLA1 from Streptomyces albidoflavus was expressed in E. coli BL21 (DE3) in this study. The results indicated that the soluble expression of PLA1 was at low level, which was possibly due to the toxicity of PLA1 to the host. In contrast, the expression of the enzyme as inclusion bodies exhibited a high-level expression and 0.3 mg inclusion bodies protein could be derived from 1 mL culture medium. Furthermore, the renaturation of PLA1 was achieved through a direct dilution method, yielding 29.6 U/mL PLA1 activity after 16 h of renaturation at 4 °C. For improving the efficiency of the dilution refolding process, a continuous refolding strategy was established, and 155 U/mL PLA1 activity was derived from the continuous refolding process. With soybean lecithin as the substrate, the specific activity of purified renatured PLA1 was 1380 U/mg and the optimal temperature and pH was found to be 60 °C and 6.5. In addition, the renatured PLA1 was observed with better activity towards phosphatidyl inositol, whilst lipase activity was detected when the catalyzing temperature was below 55 °C. Overall, this study provides a possible solution to obtain calcium-independent PLA1 with high yield by heterologous expression in E. coli and hence to promote its further application in the field of food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PLA1 :

Phospholipase A1

saPLA1 :

Phospholipase A1 from Streptomyces albidoflavus

FFA:

Free fatty acid

DLPC:

1,2-Dilauryl-sn-glycero-3-phosphocholine

DMPC:

1,2-Ditetradecanoyl-sn-glycero-3-phosphocholine

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

DPPA:

1,2-Dipalmitoyl-sn-glycero-3-phosphate

DPPS:

1,2-Dipalmitoyl-sn-glycero-3-phospho-L-serine

DPPE:

1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine

DPPG:

1,2-Dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)

PI:

L-α-phosphatidylinositol

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

GSSG:

Oxidized glutathione

GSH:

Reduced glutathione

IPTG:

Isopropyl β-D-thiogalactopyranoside

PelB:

Pectate lyase B

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

References

  1. Ramrakhiani L, Chand S. Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol. 2011;164(7):991–1022. https://doi.org/10.1007/s12010-011-9190-6.

    Article  CAS  PubMed  Google Scholar 

  2. Chávez-Garay D, Gutiérrez-Méndez N, Sanchez-Ramirez BE, Salmeron I, Martínez-Monteagudo S. Modification of lecithin-based emulsions with phospholipases. CyTA-J Food. 2020;18(1):688–97. https://doi.org/10.1080/19476337.2020.1839566.

    Article  CAS  Google Scholar 

  3. Lilbæk HM, Broe ML, Høier E, Fatum TM, Ipsen R, Sørensen NK. Improving the yield of Mozzarella cheese by phospholipase treatment of milk. J Dairy Sci. 2006;89(11):4114–25. https://doi.org/10.3168/jds.S0022-0302(06)72457-2.

    Article  PubMed  Google Scholar 

  4. Borrelli GM, Trono D. Recombinant lipases and phospholipases and their use as biocatalysts for industrial applications. Int J Mol Sci. 2015;16(9):20774–840. https://doi.org/10.3390/ijms160920774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clausen K. Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol. 2001;103(6):333–40. https://doi.org/10.1002/1438-9312(200106)103:6%3c333::AID-EJLT333%3e3.0.CO;2-F.

    Article  CAS  Google Scholar 

  6. Sampaio KA, Zyaykina N, Wozniak B, Tsukamoto J, Greyt WD, Stevens CV. Enzymatic degumming: degumming efficiency versus yield increase. Eur J Lipid Sci Technol. 2015;117(1):81–6. https://doi.org/10.1002/ejlt.201400218.

    Article  CAS  Google Scholar 

  7. Dijkstra A. Enzymatic degumming. Eur J Lipid Sci Technol. 2010;112(11):1178–89. https://doi.org/10.1002/ejlt.201000320.

    Article  CAS  Google Scholar 

  8. Richmond GS, Smith TK. Phospholipases A1. Int J Mol Sci. 2011;12(1):588–612. https://doi.org/10.3390/ijms12010588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Givskov M, Olsen L, Molin S. Cloning and expression in Escherichia coli of the gene for extracellular phospholipase A1 from Serratia liquefaciens. J Bacteriol. 1988;170(12):5855–62. https://doi.org/10.1128/jb.170.12.5855-5862.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song JK, Kim MK, Rhee JS. Cloning and expression of the gene encoding phospholipase A1 from Serratia sp. MK1 in Escherichia coli. J Biotechnol. 1999;72(1):103–14. https://doi.org/10.1016/S0168-1656(99)00096-6.

    Article  CAS  PubMed  Google Scholar 

  11. Shimuta K, Ohnishi M, Iyoda S, Gotoh N, Koizumi N, Watanabe H. The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol. 2009;9(1):261. https://doi.org/10.1186/1471-2180-9-261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park J, Eom GT, Oh JY, Park JH, Kim SC, Song JK, Ahn JH. High-level production of bacteriotoxic phospholipase A1 in bacterial host Pseudomonas fluorescens Via ABC transporter-mediated secretion and inducible expression. Microorganisms. 2020;8(2):239. https://doi.org/10.3390/microorganisms8020239.

    Article  CAS  PubMed Central  Google Scholar 

  13. Kim MK, Rhee JS. Purification and biochemical properties of extracellular phospholipase A1 from Serratia sp MK1. Journal of Microbiology and Biotechnology. 1996;6(6):407–413. https://www.koreascience.or.kr/article/JAKO199611922236445.page. Accessed 25 October 2021.

  14. Fu J, Huang H, Meng K, Yuan T, Yao B, Shi Y, Ouyang P. A novel cold-adapted phospholipase A1 from Serratia sp. xjF1: gene cloning, expression and characterization. Enzyme Microb Technol. 2008;42(2):187–94. https://doi.org/10.1016/j.enzmictec.2007.09.004.

    Article  CAS  PubMed  Google Scholar 

  15. Yang P, Wu Y, Jiang S, Zheng Z, Hou Z, Mu D, et al. Effective expression of the Serratia marcescens phospholipase A1 gene in Escherichia coli BL21(DE3), enzyme characterization, and crude rapeseed oil degumming via a free enzyme approach. Front Bioeng Biotechnol. 2019;7:272. https://doi.org/10.3389/fbioe.2019.00272.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dijkstra AJ, Van Opstal M. The total degumming process. J Am Oil Chem Soc. 1989;66(7):1002–9. https://doi.org/10.1007/BF02682627.

    Article  CAS  Google Scholar 

  17. Sugimori D, Kano K, Matsumoto Y. Purification, characterization, molecular cloning and extracellular production of a phospholipase A1 from Streptomyces albidoflavus NA297. FEBS Open Bio. 2012;2:318–27. https://doi.org/10.1016/j.fob.2012.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5. https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  20. Blight MA, Chervaux C, Holland IB. Protein secretion pathways in Escherichia coli. Curr Opin Biotechnol. 1994;5(5):468–74. https://doi.org/10.1016/0958-1669(94)90059-0.

    Article  CAS  PubMed  Google Scholar 

  21. Murayama K, Kano K, Matsumoto Y, Sugimori D. Crystal structure of phospholipase A1 from Streptomyces albidoflavus NA297. J Struct Biol. 2013;182(2):192–6. https://doi.org/10.1016/j.jsb.2013.02.003.

    Article  CAS  PubMed  Google Scholar 

  22. Rietsch A, Belin D, Martin N, Beckwith J. An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci USA. 1996;93(23):13048–53. https://doi.org/10.1073/pnas.93.23.13048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takemori D, Yoshino K, Eba C, Nakano H, Iwasaki Y. Extracellular production of phospholipase A2 from Streptomyces violaceoruber by recombinant Escherichia coli. Protein Expr Purif. 2012;81(2):145–50. https://doi.org/10.1016/j.pep.2011.10.002.

    Article  CAS  PubMed  Google Scholar 

  24. Baneyx F, Mujacic M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol. 2004;22(11):1399–408. https://doi.org/10.1038/nbt1029.

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi H, Miyazaki M. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules. 2014;4(1):235–51. https://doi.org/10.3390/biom4010235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katoh S, Katoh Y. Continuous refolding of lysozyme with fed-batch addition of denatured protein solution. Process Biochem. 2000;35(10):1119–24. https://doi.org/10.1016/S0032-9592(00)00145-X.

    Article  CAS  Google Scholar 

  27. Shiba Y, Ono C, Fukui F, Watanabe I, Serizawa N, et al. High-level secretory production of phospholipase A1 by Saccharomyces cerevisiae and Aspergillus oryzae. Biosci Biotech Bioch. 2001;65(1):94–101. https://doi.org/10.1271/bbb.65.94.

    Article  CAS  Google Scholar 

  28. Yang P, Jiang S, Wu Y, Hou Z, et al. Recombinant expression of Serratia marcescens outer membrane phospholipase A (A1) in Pichia pastoris and immobilization with graphene oxide-based Fe3O4 nanoparticles for rapeseed oil degumming. Front Microbiol. 2019;10:334. https://doi.org/10.3389/fmicb.2019.00334.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang Y, Zhao M, Song K, Wang L, et al. Partial hydrolysis of soybean oil by phospholipase A1 (Lecitase Ultra). Food Chem. 2010;121(4):1066–72. https://doi.org/10.1016/j.foodchem.2010.01.051.

    Article  CAS  Google Scholar 

  30. Song JK, Rhee JS. Simultaneous enhancement of thermostability and catalytic activity of phospholipase A1 by evolutionary molecular engineering. Appl Environ Microbiol. 2000;66(3):890–4. https://doi.org/10.1128/AEM.66.3.890-894.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Key Research & Developmental Program of China (2021YFC2100303, 2018YFA0900300).

Author information

Authors and Affiliations

Authors

Contributions

SC, ZG, YX, and LZ conceived and designed the research. SC, CL, and PG conducted the experiments. SC, ZG, and YS analyzed the data and wrote the manuscript. ZG, YX, and LZ reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Liang Zhang.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Guo, Z., Liang, C. et al. Heterologous expression, refolding, and characterization of a calcium-independent phospholipase A1 from Streptomyces albidoflavus. Syst Microbiol and Biomanuf 2, 487–497 (2022). https://doi.org/10.1007/s43393-021-00070-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-021-00070-8

Keywords

Navigation