Zhang L, Ku KM. Biomarkers-based classification between green teas and decaffeinated green teas using gas chromatography mass spectrometer coupled with in-tube extraction (ITEX). Food Chem. 2019. https://doi.org/10.1016/j.foodchem.2018.07.137.
Article
PubMed
Google Scholar
Alves RC, Rodrigues F, Antónia Nunes M, Vinha AF, Oliveira MBPP. State of the art in coffee processing by-products. In: Galanakis CM, editor. Handbook of coffee processing by-products. Elsevier: Chania; 2017. p. 1–26.
Google Scholar
International Coffee Organization. International Coffee Organization—informe del mercado de café (2019/20). https://www.ico.org/es/Market-Report-19-20-c.asp. Accessed 11 Apr 2020.
FAO. FAOSTAT (2019).https://www.fao.org/faostat/es/?#data/QC/visualize. Accessed 16 Oct 2019.
Secretaría de Agricultura, Ganadería, Desarrollo Rural P y A. México, onceavo productor mundial de café|Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación|Gobierno|gob.mx. SAGARPA. 2018. https://www.gob.mx/sagarpa/articulos/mexico-onceavo-productor-mundial-de-cafe?idiom=es. Accessed 22 Oct 2018.
Blinová L, Sirotiak M, Bartošová A, Soldán M. Review: utilization of waste from coffee production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2017. doi: 10.1515/rput-2017-0011.
Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992. https://doi.org/10.1016/0091-7435(92)90041-F.
Article
PubMed
Google Scholar
Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem. 2019. https://doi.org/10.1021/acs.jafc.8b06146.
Article
PubMed
Google Scholar
Sariri R, Najafi F, Arasteh A. The effect of cellulase extracted from symbiotic tea fungies on the quality of Iranian tea. Enzyme Microb Technol. 2006. https://doi.org/10.1016/j.enzmictec.2005.11.007.
Article
Google Scholar
Food and Agriculture Organization of the United Nations. Current market situation and medium term outlook—twenty-third session of the intergovernmental group on tea. 2018 https://www.fao.org/3/BU642en/bu642en.pdf.
Gao P, Ogata Y. CHAMU: an effective approach for improving the recycling of tea waste. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/711/1/012024.
Article
Google Scholar
Santos da Silveira J, Durand N, Lacour S, Belleville M-P, Perez A, Loiseau G, Dornier M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod Process. 2019. https://doi.org/10.1016/j.fbp.2019.04.001.
Article
Google Scholar
Londoño-Hernandez L, Ruiz HA, Cristina Ramírez T, Ascacio JA, Rodríguez-Herrera R, Aguilar CN. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal Agric Biotechnol. 2020. https://doi.org/10.1016/j.bcab.2019.101467.
Article
Google Scholar
Dieng H, Zawawi RBM, Yusof NISBM, Ahmad AH, Abang F, Ghani IA, Satho T, Ahmad H, Zuharah WF, Majid AHA, Latip NSA, Nolasco-Hipolito C, Noweg GT. Green tea and its waste attract workers of formicine ants and kill their workers—implications for pest management. Ind Crops Prod. 2016. https://doi.org/10.1016/j.indcrop.2016.05.019.
Article
Google Scholar
Oliveira SD, de Araújo Padilha CE, Asevedo EA, Pimentel VC, de Araújo FR, de Macedo GR, dos Santos ES. Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J Environ Chem Eng. 2018. https://doi.org/10.1016/j.jece.2017.12.038.
Article
Google Scholar
Catalán E, Komilis D, Sánchez A. Environmental impact of cellulase production from coffee husks by solid-state fermentation: a life-cycle assessment. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.06.100.
Article
Google Scholar
Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess. 2018. https://doi.org/10.1186/s40643-017-0187-z.
Article
Google Scholar
Marín M, Sánchez A, Artola A. Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2018.10.264.
Article
Google Scholar
Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res. 2011. https://doi.org/10.4061/2011/280696.
Article
PubMed
PubMed Central
Google Scholar
Conesa C, Seguí L, Fito P. Hydrolytic performance of aspergillus niger and trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste Biomass Valoriz. 2018. https://doi.org/10.1007/s12649-017-9887-z.
Article
Google Scholar
Tsao GT, Xia L, Cao N, Gong CS. Solid-state fermentation with Aspergillus niger for cellobiase production. Appl Biochem Biotechnol. 2000. https://doi.org/10.1385/ABAB:84-86:1-9:743.
Article
PubMed
Google Scholar
de Passos DF, Pereira N, de Castro AM. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustain Chem. 2018. https://doi.org/10.1016/j.cogsc.2018.06.003.
Article
Google Scholar
Kumar VA, Kurup RSC, Snishamol C, Prabhu GN. Role of cellulases in food, feed, and beverage industries. In: Parameswaran B, Varjani S, Raveendran S, editors. Green bio-processes. Singapore: Springer; 2019. p. 323–343.
Chapter
Google Scholar
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959. https://doi.org/10.1021/ac60147a030.
Article
Google Scholar
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Nrel DC. Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. 2012 https://www.nrel.gov/docs/gen/fy13/42618.pdf.
NMX-F-317-S-1978. NMX-F-317-S-1978. Determinacion de pH en alimentos. Determination of pH in foods. Normas mexicanas. Direccion general de normas. Colpos.Mx. 1978. https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-317-S-1978.PDF
Robledo A, Aguilera-Carbó A, Rodriguez R, Martinez JL, Garza Y, Aguilar CN. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol. 2008. https://doi.org/10.1007/s10295-008-0309-x.
Article
PubMed
Google Scholar
Torres-León C, Ramírez-Guzmán N, Ascacio-Valdés J, Serna-Cock L, dos Santos Correia MT, Contreras-Esquivel JC, Aguilar CN. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: a promising source of natural antioxidants. LWT. 2019. https://doi.org/10.1016/j.lwt.2019.06.003.
Article
Google Scholar
Idris ASO, Pandey A, Rao SS, Sukumaran RK. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Biores Technol. 2017. https://doi.org/10.1016/j.biortech.2017.03.092.
Article
Google Scholar
Meddeb-Mouelhi F, Moisan JK, Beauregard M. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microbial Technol. 2014. https://doi.org/10.1016/j.enzmictec.2014.07.004.
Article
Google Scholar
Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol. 1956;73: 269–278. https://jb.asm.org/content/73/2/269.
Prasanna HN, Ramanjaneyulu G, Rajasekhar RB. Optimization of cellulase production by Penicillium sp. 3 Biotech. 2016. https://doi.org/10.1007/s13205-016-0483-x.
Article
PubMed
PubMed Central
Google Scholar
Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004. https://doi.org/10.1002/bit.20286.
Article
PubMed
Google Scholar
Linton SM. Review: the structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol. 2020. https://doi.org/10.1016/j.cbpb.2019.110354.
Article
PubMed
Google Scholar
Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodriguez R, de la Garza H, Teixeira JA, Aguilar CN. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crops Prod. 2009. https://doi.org/10.1016/j.indcrop.2009.02.001.
Article
Google Scholar
de Oliveira RL, da Silva MF, Converti A, Porto TS. Production of β-fructofuranosidase with transfructosylating activity by Aspergillus tamarii URM4634 solid-state fermentation on agroindustrial by-products. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.12.084.
Article
PubMed
PubMed Central
Google Scholar
He Q, Peng H, Sheng M, Hu S, Qiu J, Gu J. Humidity control strategies for solid-state fermentation: capillary water supply by water-retention materials and negative-pressure auto-controlled irrigation. Front Bioeng Biotechnol. 2019. https://doi.org/10.3389/fbioe.2019.00263.
Article
PubMed
PubMed Central
Google Scholar
Patzke H, Schieber A. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate—ferulic acid as a natural pesticide against Botrytis cinerea. Food Res Int. 2018. https://doi.org/10.1016/j.foodres.2018.06.062.
Article
PubMed
Google Scholar
Mirón-Mérida VA, Yáñez-Fernández J, Montañez-Barragán B, Barragán Huerta BE. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT. 2019. https://doi.org/10.1016/j.lwt.2018.11.013.
Article
Google Scholar
Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis ) and l-theanine: medicinal values and beneficial applications in humans—a comprehensive review. Biomed Pharmacother. 2017. https://doi.org/10.1016/j.biopha.2017.09.024.
Article
PubMed
Google Scholar
Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. Deactivation of cellulases by phenols. Enzyme Microbial Technol. 2011. https://doi.org/10.1016/j.enzmictec.2010.09.006.
Article
Google Scholar
Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, Chu X, Li J, Feng S, Wang X, Wu J. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem. 2020. https://doi.org/10.1016/j.jnutbio.2019.108324.
Article
PubMed
Google Scholar
Ramón-Gonçalves M, Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019. https://doi.org/10.1016/j.wasman.2019.07.009.
Article
PubMed
Google Scholar
Leon-Revelo G, Cujilema-Quitio MC, Baryolo González L, Rosero Delgado E, Córdova J, Ramos-Sánchez LB. Efecto del pH en la producción de celulasas de Aspergillus niger en Fermentación en Estado Sólido. Rev Centro Azúcar. 2017;44: 27–38. https://www.researchgate.net/publication/315792223_Effect_of_Initial_pH_in_the_Production_of_Cellulase_by_Aspergillus_niger_in_Solid-State_Fermentation.
Hasan H. Role of caffeine and tannin in anti-toxigenic properties of coffee and tea. Cryptogam Mycol. 1999. https://doi.org/10.1016/S0181-1584(99)80004-9.
Article
Google Scholar
Fierro-Cabrales N, Contreras-Oliva A, González-Ríos O, Rosas-Mendoza ES, Morales-Ramos V. Caracterización química y nutrimental de la pulpa de café (Coffea arabica L.). Agroproductividad. 2018;4:9–13. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/261.
Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J. 2000. https://doi.org/10.1016/S1369-703X(00)00084-X.
Article
PubMed
Google Scholar
Gurram R, Al-Shannag M, Knapp S, Das T, Singsaas E, Alkasrawi M. Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technol Environ Policy. 2016. https://doi.org/10.1007/s10098-015-1015-9.
Article
Google Scholar
Murillo B, Tulio Cabezas M, Jarquin R, Bressani R. Effect of bisulfite addition on the chemical composition and cellular content fractions of dehydrated coffee pulp. J Agric Food Chem. 1977. https://doi.org/10.1021/jf60213a050.
Article
Google Scholar
Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul RN. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers. 2017. https://doi.org/10.3390/polym9110588.
Article
PubMed
PubMed Central
Google Scholar
Prajapati BP, Kumar Suryawanshi R, Agrawal S, Ghosh M, Kango N. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Biores Technol. 2018. https://doi.org/10.1016/j.biortech.2017.11.099.
Article
Google Scholar
Ezeilo UR, Wahab RA, Mahat NA. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.11.149.
Article
Google Scholar
Xu X, Lin M, Zang Q, Shi S. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Biores Technol. 2018. https://doi.org/10.1016/j.biortech.2017.08.192.
Article
Google Scholar
Crognale S, Liuzzi F, D’Annibale A, de Bari I, Petruccioli M. Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass Bioenerg. 2019. https://doi.org/10.1016/j.biombioe.2019.105276.
Article
Google Scholar