Skip to main content
Log in

Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

In this study, coffee pulp (Coffea arabica) and green tea (Camellia sinensis) residues were characterized for use as a substrate of solid-state fermentation for cellulases production. The invasion rate was evaluated, as well as cellulases production by strains of Aspergillus niger and Trichoderma asperellum from the western Ghats of India, on coffee pulp, green tea, and a mixture of both substrates (50:50). T. asperellum (AFP) strain was found to have the highest growth rate (0.409 ± 0.021 mm/h) using a mixture of both substrates. The production of cellulases by T. asperellum was unsatisfactory due to the presence of polyphenols in the supports to which A. nigger cellulases are more resistant. The production of cellulases by A. nigger was linked to the pH of the supports, favouring the use of T and TC. It was found that the extracts produced by A. niger (28A strain using a mixture substrate, 28A, and 20A strains using only green tea as a substrate) presented the highest cellulase activities when evaluated using a plate technique producing degradation halos of 2.3 ± 0.1 cm of diameter. Aspergillus 28A strain did not require mineral enrichment media for cellulase production using green tea residues as support of solid-state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang L, Ku KM. Biomarkers-based classification between green teas and decaffeinated green teas using gas chromatography mass spectrometer coupled with in-tube extraction (ITEX). Food Chem. 2019. https://doi.org/10.1016/j.foodchem.2018.07.137.

    Article  PubMed  Google Scholar 

  2. Alves RC, Rodrigues F, Antónia Nunes M, Vinha AF, Oliveira MBPP. State of the art in coffee processing by-products. In: Galanakis CM, editor. Handbook of coffee processing by-products. Elsevier: Chania; 2017. p. 1–26.

    Google Scholar 

  3. International Coffee Organization. International Coffee Organization—informe del mercado de café (2019/20). https://www.ico.org/es/Market-Report-19-20-c.asp. Accessed 11 Apr 2020.

  4. FAO. FAOSTAT (2019).https://www.fao.org/faostat/es/?#data/QC/visualize. Accessed 16 Oct 2019.

  5. Secretaría de Agricultura, Ganadería, Desarrollo Rural P y A. México, onceavo productor mundial de café|Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación|Gobierno|gob.mx. SAGARPA. 2018. https://www.gob.mx/sagarpa/articulos/mexico-onceavo-productor-mundial-de-cafe?idiom=es. Accessed 22 Oct 2018.

  6. Blinová L, Sirotiak M, Bartošová A, Soldán M. Review: utilization of waste from coffee production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2017. doi: 10.1515/rput-2017-0011.

  7. Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 1992. https://doi.org/10.1016/0091-7435(92)90041-F.

    Article  PubMed  Google Scholar 

  8. Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent advances in the understanding of the health benefits and molecular mechanisms associated with green tea polyphenols. J Agric Food Chem. 2019. https://doi.org/10.1021/acs.jafc.8b06146.

    Article  PubMed  Google Scholar 

  9. Sariri R, Najafi F, Arasteh A. The effect of cellulase extracted from symbiotic tea fungies on the quality of Iranian tea. Enzyme Microb Technol. 2006. https://doi.org/10.1016/j.enzmictec.2005.11.007.

    Article  Google Scholar 

  10. Food and Agriculture Organization of the United Nations. Current market situation and medium term outlook—twenty-third session of the intergovernmental group on tea. 2018 https://www.fao.org/3/BU642en/bu642en.pdf.

  11. Gao P, Ogata Y. CHAMU: an effective approach for improving the recycling of tea waste. IOP Conf Ser Mater Sci Eng. 2020. https://doi.org/10.1088/1757-899X/711/1/012024.

    Article  Google Scholar 

  12. Santos da Silveira J, Durand N, Lacour S, Belleville M-P, Perez A, Loiseau G, Dornier M. Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. Food Bioprod Process. 2019. https://doi.org/10.1016/j.fbp.2019.04.001.

    Article  Google Scholar 

  13. Londoño-Hernandez L, Ruiz HA, Cristina Ramírez T, Ascacio JA, Rodríguez-Herrera R, Aguilar CN. Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal Agric Biotechnol. 2020. https://doi.org/10.1016/j.bcab.2019.101467.

    Article  Google Scholar 

  14. Dieng H, Zawawi RBM, Yusof NISBM, Ahmad AH, Abang F, Ghani IA, Satho T, Ahmad H, Zuharah WF, Majid AHA, Latip NSA, Nolasco-Hipolito C, Noweg GT. Green tea and its waste attract workers of formicine ants and kill their workers—implications for pest management. Ind Crops Prod. 2016. https://doi.org/10.1016/j.indcrop.2016.05.019.

    Article  Google Scholar 

  15. Oliveira SD, de Araújo Padilha CE, Asevedo EA, Pimentel VC, de Araújo FR, de Macedo GR, dos Santos ES. Utilization of agroindustrial residues for producing cellulases by Aspergillus fumigatus on semi-solid fermentation. J Environ Chem Eng. 2018. https://doi.org/10.1016/j.jece.2017.12.038.

    Article  Google Scholar 

  16. Catalán E, Komilis D, Sánchez A. Environmental impact of cellulase production from coffee husks by solid-state fermentation: a life-cycle assessment. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.06.100.

    Article  Google Scholar 

  17. Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess. 2018. https://doi.org/10.1186/s40643-017-0187-z.

    Article  Google Scholar 

  18. Marín M, Sánchez A, Artola A. Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2018.10.264.

    Article  Google Scholar 

  19. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res. 2011. https://doi.org/10.4061/2011/280696.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Conesa C, Seguí L, Fito P. Hydrolytic performance of aspergillus niger and trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste Biomass Valoriz. 2018. https://doi.org/10.1007/s12649-017-9887-z.

    Article  Google Scholar 

  21. Tsao GT, Xia L, Cao N, Gong CS. Solid-state fermentation with Aspergillus niger for cellobiase production. Appl Biochem Biotechnol. 2000. https://doi.org/10.1385/ABAB:84-86:1-9:743.

    Article  PubMed  Google Scholar 

  22. de Passos DF, Pereira N, de Castro AM. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr Opin Green Sustain Chem. 2018. https://doi.org/10.1016/j.cogsc.2018.06.003.

    Article  Google Scholar 

  23. Kumar VA, Kurup RSC, Snishamol C, Prabhu GN. Role of cellulases in food, feed, and beverage industries. In: Parameswaran B, Varjani S, Raveendran S, editors. Green bio-processes. Singapore: Springer; 2019. p. 323–343.

    Chapter  Google Scholar 

  24. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959. https://doi.org/10.1021/ac60147a030.

    Article  Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Nrel DC. Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. 2012 https://www.nrel.gov/docs/gen/fy13/42618.pdf.

  26. NMX-F-317-S-1978. NMX-F-317-S-1978. Determinacion de pH en alimentos. Determination of pH in foods. Normas mexicanas. Direccion general de normas. Colpos.Mx. 1978. https://www.colpos.mx/bancodenormas/nmexicanas/NMX-F-317-S-1978.PDF

  27. Robledo A, Aguilera-Carbó A, Rodriguez R, Martinez JL, Garza Y, Aguilar CN. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J Ind Microbiol Biotechnol. 2008. https://doi.org/10.1007/s10295-008-0309-x.

    Article  PubMed  Google Scholar 

  28. Torres-León C, Ramírez-Guzmán N, Ascacio-Valdés J, Serna-Cock L, dos Santos Correia MT, Contreras-Esquivel JC, Aguilar CN. Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: a promising source of natural antioxidants. LWT. 2019. https://doi.org/10.1016/j.lwt.2019.06.003.

    Article  Google Scholar 

  29. Idris ASO, Pandey A, Rao SS, Sukumaran RK. Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Biores Technol. 2017. https://doi.org/10.1016/j.biortech.2017.03.092.

    Article  Google Scholar 

  30. Meddeb-Mouelhi F, Moisan JK, Beauregard M. A comparison of plate assay methods for detecting extracellular cellulase and xylanase activity. Enzyme Microbial Technol. 2014. https://doi.org/10.1016/j.enzmictec.2014.07.004.

    Article  Google Scholar 

  31. Mandels M, Reese ET. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J Bacteriol. 1956;73: 269–278. https://jb.asm.org/content/73/2/269.

  32. Prasanna HN, Ramanjaneyulu G, Rajasekhar RB. Optimization of cellulase production by Penicillium sp. 3 Biotech. 2016. https://doi.org/10.1007/s13205-016-0483-x.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xiao Z, Storms R, Tsang A. Microplate-based filter paper assay to measure total cellulase activity. Biotechnol Bioeng. 2004. https://doi.org/10.1002/bit.20286.

    Article  PubMed  Google Scholar 

  34. Linton SM. Review: the structure and function of cellulase (endo-β-1,4-glucanase) and hemicellulase (β-1,3-glucanase and endo-β-1,4-mannase) enzymes in invertebrates that consume materials ranging from microbes, algae to leaf litter. Comp Biochem Physiol B Biochem Mol Biol. 2020. https://doi.org/10.1016/j.cbpb.2019.110354.

    Article  PubMed  Google Scholar 

  35. Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodriguez R, de la Garza H, Teixeira JA, Aguilar CN. Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crops Prod. 2009. https://doi.org/10.1016/j.indcrop.2009.02.001.

    Article  Google Scholar 

  36. de Oliveira RL, da Silva MF, Converti A, Porto TS. Production of β-fructofuranosidase with transfructosylating activity by Aspergillus tamarii URM4634 solid-state fermentation on agroindustrial by-products. Int J Biol Macromol. 2020. https://doi.org/10.1016/j.ijbiomac.2019.12.084.

    Article  PubMed  PubMed Central  Google Scholar 

  37. He Q, Peng H, Sheng M, Hu S, Qiu J, Gu J. Humidity control strategies for solid-state fermentation: capillary water supply by water-retention materials and negative-pressure auto-controlled irrigation. Front Bioeng Biotechnol. 2019. https://doi.org/10.3389/fbioe.2019.00263.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Patzke H, Schieber A. Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate—ferulic acid as a natural pesticide against Botrytis cinerea. Food Res Int. 2018. https://doi.org/10.1016/j.foodres.2018.06.062.

    Article  PubMed  Google Scholar 

  39. Mirón-Mérida VA, Yáñez-Fernández J, Montañez-Barragán B, Barragán Huerta BE. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT. 2019. https://doi.org/10.1016/j.lwt.2018.11.013.

    Article  Google Scholar 

  40. Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis ) and l-theanine: medicinal values and beneficial applications in humans—a comprehensive review. Biomed Pharmacother. 2017. https://doi.org/10.1016/j.biopha.2017.09.024.

    Article  PubMed  Google Scholar 

  41. Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M. Deactivation of cellulases by phenols. Enzyme Microbial Technol. 2011. https://doi.org/10.1016/j.enzmictec.2010.09.006.

    Article  Google Scholar 

  42. Li Y, Rahman SU, Huang Y, Zhang Y, Ming P, Zhu L, Chu X, Li J, Feng S, Wang X, Wu J. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. J Nutr Biochem. 2020. https://doi.org/10.1016/j.jnutbio.2019.108324.

    Article  PubMed  Google Scholar 

  43. Ramón-Gonçalves M, Gómez-Mejía E, Rosales-Conrado N, León-González ME, Madrid Y. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 2019. https://doi.org/10.1016/j.wasman.2019.07.009.

    Article  PubMed  Google Scholar 

  44. Leon-Revelo G, Cujilema-Quitio MC, Baryolo González L, Rosero Delgado E, Córdova J, Ramos-Sánchez LB. Efecto del pH en la producción de celulasas de Aspergillus niger en Fermentación en Estado Sólido. Rev Centro Azúcar. 2017;44: 27–38. https://www.researchgate.net/publication/315792223_Effect_of_Initial_pH_in_the_Production_of_Cellulase_by_Aspergillus_niger_in_Solid-State_Fermentation.

  45. Hasan H. Role of caffeine and tannin in anti-toxigenic properties of coffee and tea. Cryptogam Mycol. 1999. https://doi.org/10.1016/S0181-1584(99)80004-9.

    Article  Google Scholar 

  46. Fierro-Cabrales N, Contreras-Oliva A, González-Ríos O, Rosas-Mendoza ES, Morales-Ramos V. Caracterización química y nutrimental de la pulpa de café (Coffea arabica L.). Agroproductividad. 2018;4:9–13. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/261.

  47. Pandey A, Soccol CR, Nigam P, Brand D, Mohan R, Roussos S. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochem Eng J. 2000. https://doi.org/10.1016/S1369-703X(00)00084-X.

    Article  PubMed  Google Scholar 

  48. Gurram R, Al-Shannag M, Knapp S, Das T, Singsaas E, Alkasrawi M. Technical possibilities of bioethanol production from coffee pulp: a renewable feedstock. Clean Technol Environ Policy. 2016. https://doi.org/10.1007/s10098-015-1015-9.

    Article  Google Scholar 

  49. Murillo B, Tulio Cabezas M, Jarquin R, Bressani R. Effect of bisulfite addition on the chemical composition and cellular content fractions of dehydrated coffee pulp. J Agric Food Chem. 1977. https://doi.org/10.1021/jf60213a050.

    Article  Google Scholar 

  50. Abdul Rahman NH, Chieng BW, Ibrahim NA, Abdul RN. Extraction and characterization of cellulose nanocrystals from tea leaf waste fibers. Polymers. 2017. https://doi.org/10.3390/polym9110588.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Prajapati BP, Kumar Suryawanshi R, Agrawal S, Ghosh M, Kango N. Characterization of cellulase from Aspergillus tubingensis NKBP-55 for generation of fermentable sugars from agricultural residues. Biores Technol. 2018. https://doi.org/10.1016/j.biortech.2017.11.099.

    Article  Google Scholar 

  52. Ezeilo UR, Wahab RA, Mahat NA. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy. 2019. https://doi.org/10.1016/j.renene.2019.11.149.

    Article  Google Scholar 

  53. Xu X, Lin M, Zang Q, Shi S. Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Biores Technol. 2018. https://doi.org/10.1016/j.biortech.2017.08.192.

    Article  Google Scholar 

  54. Crognale S, Liuzzi F, D’Annibale A, de Bari I, Petruccioli M. Cynara cardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass Bioenerg. 2019. https://doi.org/10.1016/j.biombioe.2019.105276.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support given by the National Council of Science and Technology (CONACYT-Mexico) through the project FONCICYT-CONACYT-SRE-C0013-2015-03-266614, which was implemented within a framework of bilateral cooperation between Mexico and India. Author Salvador A. Saldaña Mendoza thanks CONACYT-Mexico as well as the Autonomous University of Coahuila for the financial support and the scholarship for the development of their master's studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. Aguilar.

Ethics declarations

Confict of interest

Authors declare they have no conflicts of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saldaña-Mendoza, S.A., Ascacio-Valdés, J.A., Palacios-Ponce, A.S. et al. Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India. Syst Microbiol and Biomanuf 1, 33–41 (2021). https://doi.org/10.1007/s43393-020-00001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-020-00001-z

Keywords

Navigation