Skip to main content
Log in

Pre-op considerations in neuromuscular scoliosis deformity surgery: proceedings of the half day course at the 58th annual meeting of the Scoliosis Research Society

  • Review Article
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Scoliosis is a common complication of neuromuscular disorders. These patients are frequently recalcitrant to nonoperative treatment. When treated surgically, they have the highest risk of complications of all forms of scoliosis. While recent studies have shown an improvement in the rate of complications, they still remain high ranging from 6.3 to 75% depending upon the underlying etiology and the treatment center (Mohamad et al. in J Pediatr Orthop 27:392–397, 2007; McElroy et al. in Spine, 2012; Toll et al. in J Neurosurg Pediatr 22:207–213, 2018; Cognetti et al. in Neurosurg Focus 43:E10, 2017). For those patients who are able to recover from the perioperative period without major complications, several recent studies have shown decreased long-term mortality and improved health-related quality of life in neuromuscular patients who have undergone spine fusion (Bohtz et al. in J Pediatr Orthop 31:668–673, 2011; Ahonen et al. in Neurology 101:e1787–e1792, 2023; Jain et al. in JBJS 98:1821–1828, 2016). It is critically important to optimize patients preoperatively to minimize the risk of post-operative complications and maximize long-term outcomes. In order to do so, one must familiarize themselves with the common complications and their treatment. The most common complications are pulmonary in nature. With reported rates as high as 23–29%, pre-operative optimization should be employed for these patients to minimize the risk of post-operative complications (Sharma et al. in Eur Spine J 22:1230–1249, 2013; Rumalla et al. in J Neurosurg Spine 25:500–508, 2016). The next most common cause of complications are implant related, with 13–23% of patients experiencing an implant-related complication that may require a second procedure (Toll et al. in J Neurosurg Pediatr 22:207–213, 2018; Sharma et al. in Eur Spine J 22:1230–1249, 2013) Therefore optimization of bone quality prior to surgical intervention is important to help minimize the risk of instrumentation failure. Optimization of muscle tone and spasticity may help to decrease the risk of instrumentation complications, but may also contribute to the progression of scoliosis. While only 3% of patients have neurologic complication, significant equipoise remains regarding whether or not patients should undergo prophylactic detethering procedures to minimize those risks (Sharma et al. in Eur Spine J 22:1230–1249, 2013). Although only 1.8% of complications are classified as cardiac related, they can be among the most devastating (Rumalla et al. in J Neurosurg Spine 25:500–508, 2016). Simply understanding the underlying etiology and the potential risks associated with each condition (i.e., conduction abnormalities in a patient with Rett syndrome or cardiomyopathies patients with muscular dystrophy) can be lifesaving. The following article is a summation of the half day course on neuromuscular scoliosis from the 58th annual SRS annual meeting, summarizing the recommendations from some of the world’s experts on medical considerations in surgical treatment of neuromuscular scoliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 A, B
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Mohamad F, Parent S, Pawelek J et al (2007) Perioperative complications after surgical correction in neuromuscular scoliosis. J Pediatr Orthop 27(4):392–397

    Article  PubMed  Google Scholar 

  2. McElroy MJ, Sponseller PD, Dattilo JR et al (2012) Growing rods for the treatment of scoliosis in children with cerebral palsy: a critical assessment. Spine. https://doi.org/10.1097/BRS.0b013e31826fabd3

    Article  PubMed  Google Scholar 

  3. Toll BJ, Samdani AF, Janjua MB, Gandhi S, Pahys JM, Hwang SW (2018) Perioperative complications and risk factors in neuromuscular scoliosis surgery. J Neurosurg Pediatr 22(2):207–213

    Article  PubMed  Google Scholar 

  4. Cognetti D, Keeny HM, Samdani AF et al (2017) Neuromuscular scoliosis complication rates from 2004 to 2015: a report from the scoliosis research society morbidity and mortality database. Neurosurg Focus 43(4):E10

    Article  PubMed  Google Scholar 

  5. Bohtz C, Meyer-Heim A, Min K (2011) Changes in health-related quality of life after spinal fusion and scoliosis correction in patients with cerebral palsy. J Pediatr Orthop 31(6):668–673

    Article  PubMed  Google Scholar 

  6. Ahonen M, Helenius I, Gissler M, Jeglinsky-Kankainen I (2023) Mortality and causes of death in children with cerebral palsy with scoliosis treated with and without surgery. Neurology 101(18):e1787–e1792

    Article  CAS  PubMed  Google Scholar 

  7. Jain A, Sponseller PD, Shah SA et al (2016) Subclassification of GMFCS level-5 cerebral palsy as a predictor of complications and health-related quality of life after spinal arthrodesis. JBJS 98(21):1821–1828

    Article  Google Scholar 

  8. Sharma S, Wu C, Andersen T, Wang Y, Hansen ES, Bunger CE (2013) Prevalence of complications in neuromuscular scoliosis surgery: a literature meta-analysis from the past 15 years. Eur Spine J 22(6):1230–1249

    Article  PubMed  Google Scholar 

  9. Rumalla K, Yarbrough CK, Pugely AJ, Koester L, Dorward IG (2016) Spinal fusion for pediatric neuromuscular scoliosis: national trends, complications, and in-hospital outcomes. J Neurosurg Spine 25(4):500–508

    Article  PubMed  Google Scholar 

  10. Mesfin A, Sponseller PD, Leet AI (2012) Spinal muscular atrophy: manifestations and management. J Am Acad Orthop Surg 20(6):393–401

    Article  PubMed  Google Scholar 

  11. McElroy MJ, Shaner AC, Crawford TO et al (2011) Growing rods for scoliosis in spinal muscular atrophy: structural effects, complications, and hospital stays. Spine 36(16):1305–1311

    Article  PubMed  Google Scholar 

  12. Redding G, Mayer OH, White K et al (2017) Maximal respiratory muscle strength and vital capacity in children with early onset scoliosis. Spine 42(23):1799–1804

    Article  PubMed  Google Scholar 

  13. Lebel DE, Corston JA, McAdam LC, Biggar WD, Alman BA (2013) Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. J Bone Joint Surg Am 95(12):1057–1061

    Article  PubMed  Google Scholar 

  14. Swarup I, MacAlpine EM, Mayer OH et al (2021) Impact of growth friendly interventions on spine and pulmonary outcomes of patients with spinal muscular atrophy. Eur Spine J 30(3):768–774

    Article  PubMed  Google Scholar 

  15. Ribero VA, Daigl M, Martí Y et al (2022) How does risdiplam compare with other treatments for types 1–3 spinal muscular atrophy: a systematic literature review and indirect treatment comparison. J Comp Eff Res 11(5):347–370

    Article  CAS  PubMed  Google Scholar 

  16. Lenhart RL, Youlo S, Schroth MK et al (2017) Radiographic and respiratory effects of growing rods in children with spinal muscular atrophy. J Pediatr Orthop 37(8):e500–e504

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chua K, Tan CY, Chen Z et al (2016) Long-term follow-up of pulmonary function and scoliosis in patients with Duchenne’s muscular dystrophy and spinal muscular atrophy. J Pediatr Orthop 36(1):63–69

    Article  PubMed  Google Scholar 

  18. LoMauro A, Romei M, Gandossini S et al (2018) Evolution of respiratory function in duchenne muscular dystrophy from childhood to adulthood. Eur Respir J. https://doi.org/10.1183/13993003.01418-2017

    Article  PubMed  Google Scholar 

  19. Trucco F, Ridout D, Scoto M et al (2021) Respiratory trajectories in type 2 and 3 spinal muscular atrophy in the ismac cohort study. Neurology 96(4):e587–e599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chou SH, Lin GT, Shen PC et al (2017) The effect of scoliosis surgery on pulmonary function in spinal muscular atrophy type II patients. Eur Spine J 26(6):1721–1731

    Article  PubMed  Google Scholar 

  21. Holt JB, Dolan LA, Weinstein SL (2017) Outcomes of primary posterior spinal fusion for scoliosis in spinal muscular atrophy: clinical, radiographic, and pulmonary outcomes and complications. J Pediatr Orthop 37(8):e505–e511. https://doi.org/10.1097/BPO.0000000000001049

    Article  PubMed  Google Scholar 

  22. Roberts JL, Drissi H (2020) Advances and promises of nutritional influences on natural bone repair. J Orthop Res 38(4):695–707

    Article  PubMed  Google Scholar 

  23. Matsumoto H, Simhon ME, Campbell ML, Vitale MG, Larson EL (2020) Risk factors associated with surgical site infection in pediatric patients undergoing spinal deformity surgery: a systematic review and meta-analysis. JBJS Rev 8(3):e0163

    Article  PubMed  Google Scholar 

  24. Bisson EF, Dimar J, Harrop JS et al (2021) Congress of neurological surgeons systematic review and evidence-based guidelines for perioperative spine: preoperative nutritional assessment. Neurosurgery 89(Suppl 1):S26–S32

    Article  PubMed  Google Scholar 

  25. Bajaj A, Shah RM, Goodwin AM, Kurapaty S, Patel AA, Divi SN (2023) The role of preoperative vitamin d in spine surgery. Curr Rev Musculoskelet Med 16(2):48–54

    Article  PubMed  Google Scholar 

  26. Kerezoudis P, Rinaldo L, Drazin D et al (2016) Association between vitamin d deficiency and outcomes following spinal fusion surgery: a systematic review. World Neurosurg 95:71–76

    Article  PubMed  Google Scholar 

  27. Hu MH, Tseng YK, Chung YH, Wu NY, Li CH, Lee PY (2022) The efficacy of oral vitamin D supplements on fusion outcome in patients receiving elective lumbar spinal fusion-a randomized control trial. BMC Musculoskelet Disord 23(1):996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Granild-Jensen JB, Moller-Madsen B, Rackauskaite G et al (2023) Zoledronate increases bone mineral density in nonambulant children with cerebral palsy: a randomized controlled trial. J Clin Endocrinol Metab 108(11):2840–2851

    Article  PubMed  Google Scholar 

  29. Nasomyont N, Hornung LN, Wasserman H (2020) Intravenous bisphosphonate therapy in children with spinal muscular atrophy. Osteoporos Int 31(5):995–1000

    Article  CAS  PubMed  Google Scholar 

  30. Zacharin M, Lim A, Gryllakis J et al (2021) Randomized controlled trial evaluating the use of zoledronic acid in Duchenne muscular dystrophy. J Clin Endocrinol Metab 106(8):2328–2342

    Article  PubMed  Google Scholar 

  31. Oermann MH (1991) Effectiveness of a critical care nursing course: preparing students for practice in critical care. Heart Lung J Crit Care 20(3):278–283

    CAS  Google Scholar 

  32. McClugage SG 3rd, Bauer DF (2021) Review of tone management for the primary care provider. Pediatr Clin North Am 68(4):929–944

    Article  PubMed  Google Scholar 

  33. Koman LA, Smith BP, Shilt JS (2004) Cerebral palsy. Lancet (London, England) 363(9421):1619–1631

    Article  PubMed  Google Scholar 

  34. Folkerth RD (2006) Periventricular leukomalacia: overview and recent findings. Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society. https://doi.org/10.2350/06-01-0024.1

    Article  PubMed  Google Scholar 

  35. Heetla HW, Staal MJ, Proost JH, van Laar T (2014) Clinical relevance of pharmacological and physiological data in intrathecal baclofen therapy. Arch Phys Med Rehabil 95(11):2199–2206

    Article  PubMed  Google Scholar 

  36. Peacock WJ, Staudt LA (1990) Spasticity in cerebral palsy and the selective posterior rhizotomy procedure. J Child Neurol 5(3):179–185

    Article  CAS  PubMed  Google Scholar 

  37. Winter G, Beni-Adani L, Ben-Pazi H (2018) Intrathecal baclofen therapy-practical approach: clinical benefits and complication management. J Child Neurol 33(11):734–741

    Article  PubMed  Google Scholar 

  38. Lee S, Hyun C, Kim K, Kwon HE, Woo M, Koh SE (2023) Effect of intrathecal baclofen pump on scoliosis in children with cerebral palsy: a meta-analysis. Ann Rehabil Med 47(1):11–18

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ravindra VM, Christensen MT, Onwuzulike K et al (2017) Risk factors for progressive neuromuscular scoliosis requiring posterior spinal fusion after selective dorsal rhizotomy. J Neurosurg Pediatr 20(5):456–463

    Article  PubMed  Google Scholar 

  40. Golan JD, Hall JA, O’Gorman G et al (2007) Spinal deformities following selective dorsal rhizotomy. J Neurosurg 106(6 Suppl):441–449

    PubMed  Google Scholar 

  41. Samdani AF, Fine AL, Sagoo SS et al (2010) A patient with myelomeningocele: is untethering necessary prior to scoliosis correction? Neurosurg Focus 29(1):E8

    Article  PubMed  Google Scholar 

  42. Goldstein HE, Shao B, Madsen PJ et al (2019) Increased complications without neurological benefit are associated with prophylactic spinal cord untethering prior to scoliosis surgery in children with myelomeningocele. Childs Nerv Syst 35:2187–2194

    Article  PubMed  Google Scholar 

  43. Zhao Q, Shi B, Sun X et al (2019) Do untreated intraspinal anomalies in congenital scoliosis impact the safety and efficacy of spinal correction surgery A retrospective case-control study. J Neurosurg: Spine SPI 31(1):40–45

    Google Scholar 

  44. McVeigh LG, Anokwute MC, Belal A et al (2021) Spinal column shortening for secondary tethered cord syndrome: radiographic, clinical, patient-reported, and urodynamic short-term outcomes. J Neurosurg Pediatr 28(1):3–12

    Article  PubMed  Google Scholar 

  45. Theodore N, Cottrill E, Kalb S et al (2021) Posterior vertebral column subtraction osteotomy for recurrent tethered cord syndrome: a multicenter. Retrosp Anal Neurosurg 88(3):637–647

    Article  Google Scholar 

  46. Williams BA, Matsumoto H, McCalla DJ et al (2014) Development and initial validation of the classification of early-onset scoliosis (C-EOS). J Bone Joint Surg Am 96(16):1359–1367

    Article  PubMed  Google Scholar 

  47. Feingold B, Mahle WT, Auerbach S et al (2017) Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American heart association. Circulation 136(13):e200–e231

    Article  PubMed  Google Scholar 

  48. Durr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 335(16):1169–1175

    Article  CAS  PubMed  Google Scholar 

  49. Nigro G, Comi LI, Politano L, Bain RJ (1990) The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 26(3):271–277

    Article  CAS  PubMed  Google Scholar 

  50. Gregoratos G, Abrams J, Epstein AE et al (2002) ACC/AHA/NASPE 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). Circulation 106(16):2145–2161

    Article  PubMed  Google Scholar 

  51. Pastore JO, Yurchak PM, Janis KM, Murphy JD, Zir LM (1978) The risk of advanced heart block in surgical patients with right bundle branch block and left axis deviation. Circulation 57(4):677–680

    Article  CAS  PubMed  Google Scholar 

  52. Goldman L, Caldera DL, Nussbaum SR et al (1977) Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 297(16):845–850

    Article  CAS  PubMed  Google Scholar 

  53. Fleisher LA, Fleischmann KE, Auerbach AD et al (2014) 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 64(22):e77-137

    Article  PubMed  Google Scholar 

  54. Acampa M, Guideri F (2006) Cardiac disease and Rett syndrome. Arch Dis Child 91(5):440–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guideri F, Acampa M, Matera MR, Zappella M, Hayek Y (2004) Echocardiographic evaluation in Rett children with cardiac dysautonomia. J Pediatr Neurol 2:145–148

    Google Scholar 

  56. Kerr AM, Armstrong DD, Prescott RJ, Doyle D, Kearney DL (1997) Rett syndrome: analysis of deaths in the British survey. Eur Child Adolesc Psychiatry 6(Suppl 1):71–74

    PubMed  Google Scholar 

  57. Sekul EA, Moak JP, Schultz RJ, Glaze DG, Dunn JK, Percy AK (1994) Electrocardiographic findings in Rett syndrome: an explanation for sudden death? J Pediatr 125(1):80–82

    Article  CAS  PubMed  Google Scholar 

  58. Johnsrude C (1995) Prolonged QT intervals and diminished heart rate variability in patients with Rett syndrome. Pac Clin Electrophys 18:889

    Google Scholar 

  59. Guideri F, Acampa M, DiPerri T, Zappella M, Hayek Y (2001) Progressive cardiac dysautonomia observed in patients affected by classic Rett syndrome and not in the preserved speech variant. J Child Neurol 16(5):370–373

    Article  CAS  PubMed  Google Scholar 

  60. Ellaway CJ, Sholler G, Leonard H, Christodoulou J (1999) Prolonged QT interval in Rett syndrome. Arch Dis Child 80(5):470–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fu C, Armstrong D, Marsh E et al (2020) Consensus guidelines on managing Rett syndrome across the lifespan. BMJ Paediatr open 4(1):e000717

    Article  PubMed  PubMed Central  Google Scholar 

  62. American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Rhythm Management Devices (2005) Practice advisory for the perioperative management of patients with cardiac rhythm management devices: pacemakers and implantable cardioverter-defibrillators: a report by the American Society of Anesthesiologists Task Force on Perioperative Management of Patients with Cardiac Rhythm Management Devices. Anesthesiology 103(1):186–198. https://doi.org/10.1097/00000542-200507000-00027

    Article  Google Scholar 

  63. Navaratnam M, Dubin A (2011) Pediatric pacemakers and ICDs: how to optimize perioperative care. Paediatr Anaesth 21(5):512–521

    Article  PubMed  Google Scholar 

  64. Tsou AY, Paulsen EK, Lagedrost SJ et al (2011) Mortality in Friedreich ataxia. J Neurol Sci 307(1–2):46–49

    Article  PubMed  Google Scholar 

  65. Glotzbecker M, Troy M, Miller P et al (2019) Implementing a multidisciplinary clinical pathway can reduce the deep surgical site infection rate after posterior spinal fusion in high-risk patients. Spine Deform 7(1):33–39

    Article  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Michelle Cameron Welborn: conception/design, data acquisition, interpretation, drafted/revised work, approved final version. Gregory Redding, Patrick Evers, Lindsey Nicol, David Bauer, and Rajiv Iyer: data acquisition, interpretation, drafted/revised work, approved final version. Selina Poon and Steven Hwang: data acquisition, drafted/revised work, approved final version. All the authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Michelle C. Welborn.

Ethics declarations

Conflict of interest

Dr. Welborn reports grants from POSNA, grants from Shriners Hospital for Children, during the conduct of the study; personal fees and other from Depuy Synthes, personal fees from Nuvasive, personal fees from Stryker/K2M, personal fees from Orthopediatrics, Personal fees from AstraZenica outside the submitted work. Dr. Evers has nothing to disclose. Dr. Nicol reports personal fees from Egetis, personal fees from Ultragenyx, outside the submitted work. Dr. Bauer has nothing to disclose. Dr. Iyer has nothing to disclose. Dr. Poon reports grants from Pediatric Orthopedic Society of North America, personal fees from Medtronic Spine, personal fees from Orthopediatrics, grants from OREF, outside the submitted work. Dr. Hwang reports personal fees from NASS, other from Auctus, outside the submitted work.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welborn, M.C., Redding, G., Evers, P. et al. Pre-op considerations in neuromuscular scoliosis deformity surgery: proceedings of the half day course at the 58th annual meeting of the Scoliosis Research Society. Spine Deform (2024). https://doi.org/10.1007/s43390-024-00865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43390-024-00865-4

Keywords

Navigation