Skip to main content

Advertisement

Log in

Anterior vertebral body tethering shows clinically comparable shoulder balance outcomes to posterior spinal fusion

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

Posterior spinal fusion (PSF) is the current gold standard in surgical treatment for adolescent idiopathic scoliosis. Vertebral body tethering (VBT) is a fusionless alternative. Shoulder balance is an important metric for outcomes and patient satisfaction. Here we compare shoulder balance outcomes between PSF and VBT.

Methods

In this retrospective review, the pre-operative and post-operative absolute radiographic shoulder height (|RSH|) of 45 PSF patients were compared to 46 VBT patients. Mean values were compared and then collapsed into discrete groups (|RSH| GROUP) and compared. Patients were propensity score matched. Regression models based on pretest–posttest designs were used to compare procedure type on post-operative outcomes.

Results

Pre-operatively there were no differences in |RSH| between PSF and VBT, however, at latest post-operative follow-up PSF maintained a larger |RSH| imbalance compared to VBT (0.91 cm vs 0.63 cm, p = 0.021). In an ANCOVA regression, PSF was associated with a larger |RSH| imbalance compared to VBT, F(1, 88) = 5.76, p = 0.019. An ordinal logistic regression found that the odds ratio of being in a worse |RSH| GROUP for PSF vs VBT is 2.788 (95% CI = 1.099 to 7.075), a statistically significant effect χ2(1) = 4.658, p = 0.031. Results were similar in subgroup analyses of Lenke 1 and Lenke 2 patients, though to less statistical significance.

Conclusion

While PSF was found to be associated with worse |RSH| outcomes, the actual numbers (2–3 mm) are unlikely to be clinically meaningful. Thus, in this analysis, VBT can be said to show comparable shoulder balance outcomes to PSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be maintained for this study for up to 7 years post-publication as required by our institution’s review board.

References

  1. Weinstein SL (1989) Adolescent idiopathic scoliosis: prevalence and natural history. Instr Course Lect 38:115–128

    CAS  PubMed  Google Scholar 

  2. Fong DY et al (2015) A population-based cohort study of 394,401 children followed for 10 years exhibits sustained effectiveness of scoliosis screening. Spine J 15(5):825–833

    Article  PubMed  Google Scholar 

  3. Weinstein SL (2019) The natural history of adolescent idiopathic scoliosis. J Pediatr Orthop 39(Issue 6, Supplement 1 Suppl 1):S44–S46

    Article  PubMed  Google Scholar 

  4. Weinstein SL et al (2008) Adolescent idiopathic scoliosis. Lancet 371(9623):1527–1537

    Article  PubMed  Google Scholar 

  5. Mankin HJ, Graham JJ, Schack J (1964) Cardiopulmonary function in mild and moderate idiopathic scoliosis. J Bone Joint Surg Am 46:53–62

    Article  CAS  PubMed  Google Scholar 

  6. Aaro S, Ohlund C (1984) Scoliosis and pulmonary function. Spine 9(2):220–222

    Article  CAS  PubMed  Google Scholar 

  7. Tsiligiannis T, Grivas T (2012) Pulmonary function in children with idiopathic scoliosis. Scoliosis 7(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Van Hooff ML, Te Hennepe N, De Kleuver M (2020) Pulmonary function in patients with spinal deformity: have we been ignorant? Acta Orthop 91(5):503–505

    Article  PubMed  PubMed Central  Google Scholar 

  9. Calvo-Munoz I, Gomez-Conesa A, Sanchez-Meca J (2013) Prevalence of low back pain in children and adolescents: a meta-analysis. BMC Pediatr 13:14

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dimar JR 2nd, Glassman SD, Carreon LY (2007) Juvenile degenerative disc disease: a report of 76 cases identified by magnetic resonance imaging. Spine J 7(3):332–337

    Article  PubMed  Google Scholar 

  11. Payne WK 3rd et al (1997) Does scoliosis have a psychological impact and does gender make a difference? Spine 22(12):1380–1384

    Article  PubMed  Google Scholar 

  12. Tones M, Moss N, Polly DW Jr (2006) A review of quality of life and psychosocial issues in scoliosis. Spine 31(26):3027–3038

    Article  PubMed  Google Scholar 

  13. Roberts SB, Tsirikos AI, Subramanian AS (2014) Posterior spinal fusion for adolescent idiopathic thoracolumbar/lumbar scoliosis: clinical outcomes and predictive radiological factors for extension of fusion distal to caudal end vertebra. Bone Joint J 96-B(8):1082–1089

    Article  CAS  PubMed  Google Scholar 

  14. Kwan MK et al (2021) Perioperative outcome and complications following single-staged Posterior Spinal Fusion (PSF) using pedicle screw instrumentation in Adolescent Idiopathic Scoliosis (AIS): a review of 1057 cases from a single centre. BMC Musculoskelet Disord 22(1):413

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wagner SC, Lehman RA, Lenke LG (2015) Surgical management of adolescent idiopathic scoliosis. Semin Spine Surg 27(1):33–38

    Article  Google Scholar 

  16. Lonner BS et al (2018) Evolution of surgery for adolescent idiopathic scoliosis over 20 years: have outcomes improved? Spine 43(6):402–410

    Article  PubMed  Google Scholar 

  17. Parent S, Shen J (2020) Anterior vertebral body growth-modulation tethering in idiopathic scoliosis: surgical technique. J Am Acad Orthop Surg 28(17):693–699

    Article  PubMed  Google Scholar 

  18. Newton PO et al (2018) Anterior spinal growth tethering for skeletally immature patients with scoliosis: a retrospective look two to four years postoperatively. J Bone Joint Surg Am 100(19):1691–1697

    Article  PubMed  Google Scholar 

  19. Samdani AF et al (2014) Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine 39(20):1688–1693

    Article  PubMed  Google Scholar 

  20. Boudissa M et al (2017) Early outcomes of spinal growth tethering for idiopathic scoliosis with a novel device: a prospective study with 2 years of follow-up. Childs Nerv Syst 33(5):813–818

    Article  CAS  PubMed  Google Scholar 

  21. Buchanan R et al (2003) Do you see what I see? Looking at scoliosis surgical outcomes through orthopedists’ eyes. Spine 28(24):2700–2704

    Article  PubMed  Google Scholar 

  22. Auerbach JD et al (2014) Body image in patients with adolescent idiopathic scoliosis: validation of the body image disturbance questionnaire-scoliosis version. J Bone Joint Surg Am 96(8):e61

    Article  PubMed  Google Scholar 

  23. Suk SI et al (2000) Indications of proximal thoracic curve fusion in thoracic adolescent idiopathic scoliosis: recognition and treatment of double thoracic curve pattern in adolescent idiopathic scoliosis treated with segmental instrumentation. Spine 25(18):2342–2349

    Article  CAS  PubMed  Google Scholar 

  24. Smith PL et al (2006) Parents’ and patients’ perceptions of postoperative appearance in adolescent idiopathic scoliosis. Spine 31(20):2367–2374

    Article  PubMed  Google Scholar 

  25. Terheyden JH et al (2018) Rasterstereography versus radiography for assessing shoulder balance in idiopathic scoliosis: a validation study relative to patients’ self-image. J Back Musculoskelet Rehabil 31(6):1049–1057

    Article  PubMed  Google Scholar 

  26. Lee SY et al (2023) Patients’ perception and satisfaction on neck and shoulder imbalance in adolescent idiopathic scoliosis. Global Spine J 13(3):752–763

    Article  CAS  PubMed  Google Scholar 

  27. Ilharreborde B et al (2008) How to determine the upper level of instrumentation in Lenke types 1 and 2 adolescent idiopathic scoliosis: a prospective study of 132 patients. J Pediatr Orthop 28(7):733–739

    Article  PubMed  Google Scholar 

  28. Trobisch PD et al (2013) Choosing fusion levels in adolescent idiopathic scoliosis. J Am Acad Orthop Surg 21(9):519–528

    PubMed  Google Scholar 

  29. Donaldson S et al (2007) Surgical decision making in adolescent idiopathic scoliosis. Spine 32(14):1526–1532

    Article  PubMed  Google Scholar 

  30. Lonner B et al (2020) The patient generated index and decision regret in adolescent idiopathic scoliosis. Spine Deform 8(6):1231–1238

    Article  PubMed  Google Scholar 

  31. Miyanji F et al (2021) Shoulder balance in patients with Lenke type 1 and 2 idiopathic scoliosis appears satisfactory at 2 years following anterior vertebral body tethering of the spine. Spine Deform 9(6):1591–1599

    Article  PubMed  Google Scholar 

  32. Kuklo TR et al (2002) Correlation of radiographic, clinical, and patient assessment of shoulder balance following fusion versus nonfusion of the proximal thoracic curve in adolescent idiopathic scoliosis. Spine 27(18):2013–2020

    Article  PubMed  Google Scholar 

  33. O’Brien MF et al (2008) Radiographic measurement manual: spinal deformity study group. Medtronic Sofamor Danek USA, Inc., Memphis

    Google Scholar 

  34. Dang NR et al (2005) Intra-observer reproducibility and interobserver reliability of the radiographic parameters in the Spinal Deformity Study Group’s AIS Radiographic Measurement Manual. Spine 30(9):1064–1069

    Article  PubMed  Google Scholar 

  35. Kwan MK et al (2016) Is neck tilt and shoulder imbalance the same phenomenon? A prospective analysis of 89 adolescent idiopathic scoliosis patients (Lenke type 1 and 2). Eur Spine J 25(2):401–408

    Article  PubMed  Google Scholar 

  36. Kuklo TR et al (2001) Spontaneous proximal thoracic curve correction after isolated fusion of the main thoracic curve in adolescent idiopathic scoliosis. Spine 26(18):1966–1975

    Article  CAS  PubMed  Google Scholar 

  37. Lee CS et al (2011) Changes of upper thoracic curve and shoulder balance in thoracic adolescent idiopathic scoliosis treated by anterior selective thoracic fusion using VATS. J Spinal Disord Tech 24(7):462–468

    Article  PubMed  Google Scholar 

  38. Han X et al (2016) Clavicle chest cage angle difference: is it a radiographic and clinical predictor of postoperative shoulder imbalance in Lenke I adolescent idiopathic scoliosis? Spine (Phila Pa 1976) 41(17):1346–1354

    Article  PubMed  Google Scholar 

  39. Wei Chan CY et al (2020) An analysis of preoperative shoulder and neck balance and surgical outcome in 111 adolescent idiopathic scoliosis patients with two subtypes of Lenke 1 curves. J Neurosurg Spine 34(1):37–44

    PubMed  Google Scholar 

  40. Dimitrov DM, Rumrill PD Jr (2003) Pretest-posttest designs and measurement of change. Work 20(2):159–165

    PubMed  Google Scholar 

  41. Mathew SE et al (2022) Vertebral body tethering compared to posterior spinal fusion for skeletally immature adolescent idiopathic scoliosis patients: preliminary results from a matched case-control study. Spine Deform 10(5):1123–1131

    Article  PubMed  Google Scholar 

  42. Siu JW et al (2023) Perioperative outcomes of open anterior vertebral body tethering and instrumented posterior spinal fusion for skeletally immature patients with idiopathic scoliosis. J Pediatr Orthop 43(3):143–150

    Article  PubMed  Google Scholar 

  43. Newton PO et al (2022) Anterior vertebral body tethering compared with posterior spinal fusion for major thoracic curves: a retrospective comparison by the Harms Study Group. J Bone Joint Surg Am 104(24):2170–2177

    Article  PubMed  Google Scholar 

  44. Tang X et al (2016) The spontaneous development of cosmetic shoulder balance and shorter segment fusion in adolescent idiopathic scoliosis with Lenke I curve: a consecutive study followed up for 2 to 5 years. Spine (Phila Pa 1976) 41(12):1028–1035

    Article  PubMed  Google Scholar 

  45. Gotfryd AO et al (2017) Predictors for postoperative shoulder balance in Lenke 1 adolescent idiopathic scoliosis: a prospective cohort study. Spine Deform 5(1):66–71

    Article  PubMed  Google Scholar 

  46. Lee CK et al (1993) Analysis of the upper thoracic curve in surgically treated idiopathic scoliosis. A new concept of the double thoracic curve pattern. Spine (Phila Pa 1976) 18(12):1599–1608

    Article  CAS  PubMed  Google Scholar 

  47. Brooks JT et al (2018) In search of the ever-elusive postoperative shoulder balance: is the T2 UIV the key? Spine Deform 6(6):707–711

    Article  PubMed  Google Scholar 

  48. Rose PS, Lenke LG (2007) Classification of operative adolescent idiopathic scoliosis: treatment guidelines. Orthop Clin North Am 38(4):521–529

    Article  PubMed  Google Scholar 

  49. Bjerke BT et al (2015) Do current recommendations for upper instrumented vertebra predict shoulder imbalance? An attempted validation of level selection for adolescent idiopathic scoliosis. HSS J 11(3):216–222

    Article  PubMed  PubMed Central  Google Scholar 

  50. King HA et al (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am 65(9):1302–1313

    Article  CAS  PubMed  Google Scholar 

  51. Baroncini A et al (2021) Return to sport and daily life activities after vertebral body tethering for AIS: analysis of the sport activity questionnaire. Eur Spine J 30(7):1998–2006

    Article  PubMed  Google Scholar 

  52. Gajaseni P et al (2022) Achieving shoulder balance using medial and lateral radiological measures in adolescent idiopathic scoliosis. Iowa Orthop J 42(1):47–51

    PubMed  PubMed Central  Google Scholar 

  53. Qiu XS et al (2009) Discrepancy between radiographic shoulder balance and cosmetic shoulder balance in adolescent idiopathic scoliosis patients with double thoracic curve. Eur Spine J 18(1):45–51

    Article  PubMed  Google Scholar 

  54. Sharma S et al (2016) How well do radiologic assessments of truncal and shoulder balance correlate with cosmetic assessment indices in Lenke 1C adolescent idiopathic scoliosis? Clin Spine Surg 29(8):341–351

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was received from Setting Scoliosis Straight Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data: JM, LE, AS, FM, MH, AW, AA, CY, DH, SS, PN, BL. Drafted the work or revised it critically for important intellectual content: JM, LE, AS, FM, MH, AW, AA, CY, DH, SS, PN, BL. Approved the version to be published: JM, LE, AS, FM, MH, AW, AA, CY, DH, SS, PN, BL. Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: JM, LE, AS, FM, MH, AW, AA, CY, DH, SS, PN, BL.

Corresponding author

Correspondence to Baron Lonner.

Ethics declarations

Conflict of interest

Dr. Lonner reports personal fees, royalty fees, and research grant support from ZimVie Spine for The Tether implant. Dr. Lonner also reports personal fees, non-financial support and other from Depuy Synthes, personal fees and non-financial support from OrthoPediatrics, other from Paradigm Spine, non-financial support and other from Spine Search, other from Setting Scoliosis Straight Foundation, outside the submitted work.

Ethical approval

This work was approved by the Institutional Review Board at Mount Sinai Hospital.

Consent to participate

This work was performed under informed consent approved by the Institutional Review Board at Mount Sinai Hospital.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyers, J., Eaker, L., Samdani, A. et al. Anterior vertebral body tethering shows clinically comparable shoulder balance outcomes to posterior spinal fusion. Spine Deform (2024). https://doi.org/10.1007/s43390-024-00847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43390-024-00847-6

Keywords

Navigation