Skip to main content

Advertisement

Log in

S2 alar-iliac screws are superior to traditional iliac screws for spinopelvic fixation in adult spinal deformity: a systematic review and meta-analysis

  • Review Article
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

Spinopelvic fixation (SPF) using traditional iliac screws has provided biomechanical advantages compared to previous constructs, but common complications include screw prominence and wound complications. The newer S2 alar-iliac (S2AI) screw may provide a lower profile option with lower rates of complications and revisions for adult spinal deformity (ASD). The purpose of this study was to compare rates of complications and revision following SPF between S2AI and traditional iliac screws in patients with ASD.

Methods

A PRISMA-compliant systematic literature review was conducted using Cochrane, Embase, and PubMed. Included studies reported primary data on adult patients undergoing S2AI screw fixation or traditional IS fixation for ASD. Primary outcomes of interest were rates of revision and complications, which included screw failure (fracture and loosening), symptomatic screw prominence, wound complications (dehiscence and infection), and L5-S1 pseudarthrosis.

Results

Fifteen retrospective studies with a total of 1502 patients (iliac screws: 889 [59.2%]; S2AI screws: 613 [40.8%]) were included. Pooled analysis indicated that iliac screws had significantly higher odds of revision (17.1% vs 9.1%, OR = 2.45 [1.25–4.77]), symptomatic screw prominence (9.9% vs 2.2%, OR = 6.26 [2.75–14.27]), and wound complications (20.1% vs 4.4%, OR = 5.94 [1.55–22.79]). S2AI screws also led to a larger preoperative to postoperative decrease in pain (SMD = − 0.26, 95% CI = -0.50, − 0.011).

Conclusion

The findings from this review demonstrate higher rates of revision, symptomatic screw prominence, and wound complications with traditional iliac screws. Current data supports the use of S2AI screws specifically for ASD.

PROSPERO ID

CRD42022336515.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data relevant to the study are included in the manuscript and its tables.

References

  1. de Kleuver M, Faraj SSA, Haanstra TM, Wright AK, Polly DW, van Hooff ML et al (2021) The Scoliosis Research Society adult spinal deformity standard outcome set. Spine Deform 9(5):1211–1221. https://doi.org/10.1007/s43390-021-00334-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Safaee MM, Ames CP, Smith JS (2020) Epidemiology and socioeconomic trends in adult spinal deformity care. Neurosurgery 87(1):25–32. https://doi.org/10.1093/neuros/nyz454

    Article  PubMed  Google Scholar 

  3. Jain A, Hassanzadeh H, Strike SA, Menga EN, Sponseller PD, Kebaish KM (2015) Pelvic fixation in adult and pediatric spine surgery: historical perspective, indications, and techniques: AAOS exhibit selection. J Bone Joint Surg Am 97(18):1521–1528. https://doi.org/10.2106/jbjs.O.00576

    Article  PubMed  Google Scholar 

  4. Ivanov AA, Kiapour A, Ebraheim NA, Goel V (2009) Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine (Phila Pa 1976) 34(5):E162–E169. https://doi.org/10.1097/BRS.0b013e3181978ea3

    Article  PubMed  Google Scholar 

  5. Allen BL Jr, Ferguson RL (1984) The Galveston technique of pelvic fixation with L-rod instrumentation of the spine. Spine (Phila Pa 1976) 9(4):388–394. https://doi.org/10.1097/00007632-198405000-00011

    Article  PubMed  Google Scholar 

  6. Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 44-a:591–610

    Article  CAS  PubMed  Google Scholar 

  7. Luque ER (1982) Segmental spinal instrumentation for correction of scoliosis. Clin Orthop Relat Res 163:192–198

    Article  Google Scholar 

  8. Tsuchiya K, Bridwell KH, Kuklo TR, Lenke LG, Baldus C (2006) Minimum 5-year analysis of L5–S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976) 31(3):303–308. https://doi.org/10.1097/01.brs.0000197193.81296.f1

    Article  PubMed  Google Scholar 

  9. McCord DH, Cunningham BW, Shono Y, Myers JJ, McAfee PC (1992) Biomechanical analysis of lumbosacral fixation. Spine (Phila Pa 1976) 17(8 Suppl):S235–S243. https://doi.org/10.1097/00007632-199208001-00004

    Article  CAS  PubMed  Google Scholar 

  10. Hyun SJ, Rhim SC, Kim YJ, Kim YB (2010) A mid-term follow-up result of spinopelvic fixation using iliac screws for lumbosacral fusion. J Korean Neurosurg Soc 48(4):347–353. https://doi.org/10.3340/jkns.2010.48.4.347

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kasten MD, Rao LA, Priest B (2010) Long-term results of iliac wing fixation below extensive fusions in ambulatory adult patients with spinal disorders. J Spinal Disord Tech 23(7):e37-42. https://doi.org/10.1097/BSD.0b013e3181cc8e7f

    Article  PubMed  Google Scholar 

  12. Sponseller PD, Zimmerman RM, Ko PS, Pull Ter Gunne AF, Mohamed AS, Chang TL et al (2010) Low profile pelvic fixation with the sacral alar iliac technique in the pediatric population improves results at two-year minimum follow-up. Spine (Phila Pa 1976) 35(20):1887–1892. https://doi.org/10.1097/BRS.0b013e3181e03881

    Article  PubMed  Google Scholar 

  13. Elder BD, Ishida W, Lo SL, Holmes C, Goodwin CR, Kosztowski TA et al (2017) Use of S2-alar-iliac screws associated with less complications than iliac screws in adult lumbosacropelvic fixation. Spine (Phila Pa 1976) 42(3):E142–E149. https://doi.org/10.1097/brs.0000000000001722

    Article  PubMed  Google Scholar 

  14. Ishida W, Elder BD, Holmes C, Goodwin CR, Lo SF, Kosztowski TA et al (2016) S2-Alar-Iliac screws are associated with lower rate of symptomatic screw prominence than iliac screws: radiographic analysis of minimal distance from screw head to skin. World Neurosurg 93:253–260. https://doi.org/10.1016/j.wneu.2016.06.042

    Article  PubMed  Google Scholar 

  15. Wu A-M, Chen D, Chen C-H, Li Y-Z, Tang L, Phan K et al (2017) The technique of S2-alar-iliac screw fixation: a literature review. AME Med J 2(12)

  16. Burns CB, Dua K, Trasolini NA, Komatsu DE, Barsi JM (2016) Biomechanical comparison of spinopelvic fixation constructs: iliac screw versus S2-alar-iliac screw. Spine Deform 4(1):10–15. https://doi.org/10.1016/j.jspd.2015.07.008

    Article  PubMed  Google Scholar 

  17. Hirase T, Shin C, Ling J, Phelps B, Haghshenas V, Saifi C et al (2022) S2 alar-iliac screw versus traditional iliac screw for spinopelvic fixation: a systematic review of comparative biomechanical studies. Spine Deform 10(6):1279–1288. https://doi.org/10.1007/s43390-022-00528-2

    Article  PubMed  Google Scholar 

  18. von Glinski A, Elia CJ, Wiginton JG, Ansari D, Pierre C, Ishak B et al (2022) Iliac screw fixation revisited: improved clinical and radiologic outcomes using a modified iliac screw fixation technique. Clin Spine Surg 35(1):E127–E131. https://doi.org/10.1097/BSD.0000000000001182

    Article  Google Scholar 

  19. De la Garza RR, Nakhla J, Sciubba DM, Yassari R (2018) Iliac screw versus S2 alar-iliac screw fixation in adults: a meta-analysis. J Neurosurg Spine 30(2):253–258. https://doi.org/10.3171/2018.7.SPINE18710

    Article  Google Scholar 

  20. Hasan MY, Liu G, Wong HK, Tan JH (2020) Postoperative complications of S2AI versus iliac screw in spinopelvic fixation: a meta-analysis and recent trends review. Spine J 20(6):964–972. https://doi.org/10.1016/j.spinee.2019.11.014

    Article  PubMed  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

  23. Friedrich JO, Adhikari NKJ, Beyene J (2007) Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data. BMC Med Res Methodol 7(1):5. https://doi.org/10.1186/1471-2288-7-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eastlack RK, Soroceanu A, Mundis GM Jr, Daniels AH, Smith JS, Line B et al (2022) Rates of loosening, failure, and revision of iliac fixation in adult deformity surgery. Spine (Phila Pa 1976) 47(14):986–994. https://doi.org/10.1097/brs.0000000000004356

    Article  PubMed  Google Scholar 

  25. Guler UO, Cetin E, Yaman O, Pellise F, Casademut AV, Sabat MD et al (2015) Sacropelvic fixation in adult spinal deformity (ASD); a very high rate of mechanical failure. Eur Spine J 24(5):1085–1091. https://doi.org/10.1007/s00586-014-3615-1

    Article  PubMed  Google Scholar 

  26. Ilyas H, Place H, Puryear A (2015) A comparison of early clinical and radiographic complications of iliac screw fixation versus S2 alar Iliac (S2AI) fixation in the adult and pediatric populations. J Spinal Disord Tech 28(4):E199-205. https://doi.org/10.1097/bsd.0000000000000222

    Article  PubMed  Google Scholar 

  27. Ishida W, Elder BD, Holmes C, Lo SL, Goodwin CR, Kosztowski TA et al (2017) Comparison between S2-alar-iliac screw fixation and iliac screw fixation in adult deformity surgery: reoperation rates and spinopelvic parameters. Global Spine J 7(7):672–680. https://doi.org/10.1177/2192568217700111

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee KY, Lee JH, Kang KC, Shin SJ, Shin WJ, Im SK et al (2020) Strategy for obtaining solid fusion at L5–S1 in adult spinal deformity: risk factor analysis for nonunion at L5–S1. J Neurosurg Spine. https://doi.org/10.3171/2020.2.Spine191181

    Article  PubMed  Google Scholar 

  29. Lee NJ, Marciano G, Puvanesarajah V, Park PJ, Clifton WE, Kwan K et al (2022) Incidence, mechanism, and protective strategies for 2-year pelvic fixation failure after adult spinal deformity surgery with a minimum six-level fusion. J Neurosurg Spine. https://doi.org/10.3171/2022.8.Spine22755

    Article  PubMed  Google Scholar 

  30. Lee NJ, Park PJ, Puvanesarajah V, Clifton WE, Kwan K, Morrissette CR et al (2022) How common is acute pelvic fixation failure after adult spine surgery? A single-center study of 358 patients. J Neurosurg Spine. https://doi.org/10.3171/2022.7.Spine22498

    Article  PubMed  Google Scholar 

  31. Luo Q, Kim YC, Kim KT, Ha KY, Ahn J, Kim SM et al (2021) Use of iliac screw associated with more correction of lumbar lordosis than S2-alar-iliac screw for adult spinal deformity. BMC Musculoskelet Disord 22(1):676. https://doi.org/10.1186/s12891-021-04568-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mazur MD, Ravindra VM, Schmidt MH, Brodke DS, Lawrence BD, Riva-Cambrin J et al (2015) Unplanned reoperation after lumbopelvic fixation with S-2 alar-iliac screws or iliac bolts. J Neurosurg Spine 23(1):67–76. https://doi.org/10.3171/2014.10.Spine14541

    Article  PubMed  Google Scholar 

  33. Nazemi AK, Gowd AK, Vaccaro AR, Carmouche JJ, Behrend CJ (2018) Unilateral S2 alar-iliac screws for spinopelvic fixation. Surg Neurol Int 9:75. https://doi.org/10.4103/sni.sni_460_17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ishida W, Ramhmdani S, Casaos J, Perdomo-Pantoja A, Elder BD, Theodore N et al (2019) Safety profile of lumbosacropelvic fixation in patients aged 60 years or older: comparison between S2-alar-iliac screws and conventional iliac screws. Clin Spine Surg 32(4):E200–E205. https://doi.org/10.1097/bsd.0000000000000806

    Article  PubMed  Google Scholar 

  35. Krieg SM, Sollmann N, Ille S, Albers L, Meyer B (2021) Revision by S2-alar-iliac instrumentation reduces caudal screw loosening while improving sacroiliac joint pain-a group comparison study. Neurosurg Rev 44(4):2145–2151. https://doi.org/10.1007/s10143-020-01377-1

    Article  PubMed  Google Scholar 

  36. Park GO, Choi UY, Kim KH, Park JY, Chin DK, Kim KS et al (2021) Complication profiles associated with sacral alar iliac screw fixation in patients with adult spinal deformity: a comparative analysis to the conventional iliac screw fixation. Nerve 7(2):71–77. https://doi.org/10.21129/nerve.2021.7.2.71

    Article  Google Scholar 

  37. Han B, Yin P, Hai Y, Cheng Y, Guan L, Liu Y (2021) The comparison of spinopelvic parameters, complications, and clinical outcomes after spinal fusion to S1 with or without additional sacropelvic fixation for adult spinal deformity: a systematic review and meta-analysis. Spine (Phila Pa 1976) 46(17):E945–E953. https://doi.org/10.1097/brs.0000000000004003

    Article  PubMed  Google Scholar 

  38. Chang TL, Sponseller PD, Kebaish KM, Fishman EK (2009) Low profile pelvic fixation: anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation. Spine (Phila Pa 1976) 34(5):436–440. https://doi.org/10.1097/BRS.0b013e318194128c

    Article  PubMed  Google Scholar 

  39. O’Shaughnessy BA, Lenke LG, Bridwell KH, Cho W, Zebala LP, Chang MS et al (2012) Should symptomatic iliac screws be electively removed in adult spinal deformity patients fused to the sacrum? Spine (Phila Pa 1976) 37(13):1175–1181. https://doi.org/10.1097/BRS.0b013e3182426970

    Article  Google Scholar 

  40. Fang A, Hu SS, Endres N, Bradford DS (2005) Risk factors for infection after spinal surgery. Spine (Phila Pa 1976) 30(12):1460–1465. https://doi.org/10.1097/01.brs.0000166532.58227.4f

    Article  PubMed  Google Scholar 

  41. de Andrada PB, Lehrman JN, Sawa AGU, Lindsey DP, Yerby SA, Godzik J et al (2021) Biomechanical effects of a novel posteriorly placed sacroiliac joint fusion device integrated with traditional lumbopelvic long-construct instrumentation. J Neurosurg Spine. https://doi.org/10.3171/2020.11.Spine201540

    Article  Google Scholar 

  42. Hoernschemeyer DG, Pashuck TD, Pfeiffer FM (2017) Analysis of the s2 alar-iliac screw as compared with the traditional iliac screw: does it increase stability with sacroiliac fixation of the spine? Spine J 17(6):875–879. https://doi.org/10.1016/j.spinee.2017.02.001

    Article  PubMed  Google Scholar 

  43. O’Brien JR, Yu W, Kaufman BE, Bucklen B, Salloum K, Khalil S et al (2013) Biomechanical evaluation of S2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation. Spine 38(20):E1250–E1255. https://doi.org/10.1097/BRS.0b013e31829e17ff

    Article  Google Scholar 

  44. Von Glinski A, Pierre C, Frieler S, Mahoney JM, Harris JA, Amin DB et al (2021) Fixation strength of modified iliac screw trajectory compared to traditional iliac and S2 alar-iliac trajectories: a cadaveric study. World Neurosurg 154:e481–e487. https://doi.org/10.1016/j.wneu.2021.07.065

    Article  Google Scholar 

  45. Casaroli G, Galbusera F, Chande R, Lindsey D, Mesiwala A, Yerby S et al (2019) Evaluation of iliac screw, S2 alar-iliac screw and laterally placed triangular titanium implants for sacropelvic fixation in combination with posterior lumbar instrumentation: a finite element study. Eur Spine J 28(7):1724–1732. https://doi.org/10.1007/s00586-019-06006-0

    Article  PubMed  Google Scholar 

  46. Galbusera F, Casaroli G, Chande R, Lindsey D, Villa T, Yerby S et al (2020) Biomechanics of sacropelvic fixation: a comprehensive finite element comparison of three techniques. Eur Spine J 29(2):295–305. https://doi.org/10.1007/s00586-019-06225-5

    Article  PubMed  Google Scholar 

  47. Shin J, Lee C, Goh T, Son S, Lee J (2017) Biomechanical comparison for two types of sacropelvic fixation techniques based on finite element analysis. Global Spine J 7(2):199S-200S. https://doi.org/10.1177/2192568217708189

    Article  Google Scholar 

  48. Sohn S, Park TH, Chung CK, Kim YJ, Jang JW, Han IB et al (2018) Biomechanical characterization of three iliac screw fixation techniques: a finite element study. J Clin Neurosci 52:109–114. https://doi.org/10.1016/j.jocn.2018.03.002

    Article  PubMed  Google Scholar 

  49. Gao Z, Sun X, Chen C, Teng Z, Xu B, Ma X et al (2021) Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation. Eur Spine J 30(8):2257–2270. https://doi.org/10.1007/s00586-021-06864-7

    Article  PubMed  Google Scholar 

  50. Keorochana G, Arirachakaran A, Setrkraising K, Kongtharvonskul J (2019) Comparison of complications and revisions after sacral 2 alar iliac screw and iliac screw fixation for sacropelvic fixation in pediatric and adult populations: systematic review and meta-analysis. World Neurosurg 132:408–20.e1. https://doi.org/10.1016/j.wneu.2019.08.104

    Article  PubMed  Google Scholar 

  51. Elder BD, Ishida W, Lo SFL, Holmes C, Goodwin CR, Kosztowski TA et al (2017) Use of S2-Alar-iliac screws associated with less complications than iliac screws in adult lumbosacropelvic fixation. Spine 42(3):E142–E149. https://doi.org/10.1097/BRS.0000000000001722

    Article  PubMed  Google Scholar 

  52. Saigal R, Lau D, Wadhwa R, Le H, Khashan M, Berven S et al (2014) Unilateral versus bilateral iliac screws for spinopelvic fixation: are two screws better than one? Neurosurg Focus 36(5):E10. https://doi.org/10.3171/2014.3.Focus1428

    Article  PubMed  Google Scholar 

  53. Deckey DG, Gulbrandsen MT, Hinckley NB, Lara N, Mayfield CK, Makovicka JL et al (2021) Does laterality matter the effect of unilateral v. bilateral sacroiliac screw fixation on personal hygiene. Global Spine J. https://doi.org/10.1177/21925682211015675

    Article  PubMed  PubMed Central  Google Scholar 

  54. Uotani K, Tanaka M, Sonawane S, Ruparel S, Fujiwara Y, Arataki S et al (2021) Comparative study of bilateral dual sacral-alar-iliac screws versus bilateral single sacral-alar-iliac screw for adult spine deformities. World Neurosurg 156:e300–e306. https://doi.org/10.1016/j.wneu.2021.09.048

    Article  PubMed  Google Scholar 

  55. Hey HWD, Ramos MRD, Tay HW, Lin S, Liu KG, Wong HK (2022) The lateral entry point S2 alar-iliac (L-S2AI) screw: a preoperative computed tomography analysis of adult spinal deformity patients. Spine Deform 10(3):669–678. https://doi.org/10.1007/s43390-021-00462-9

    Article  PubMed  Google Scholar 

  56. Panico M, Chande RD, Lindsey DP, Mesiwala A, Villa TMT, Yerby SA et al (2021) Innovative sacropelvic fixation using iliac screws and triangular titanium implants. Eur Spine J 30(12):3763–3770. https://doi.org/10.1007/s00586-021-07006-9

    Article  PubMed  Google Scholar 

  57. Panico M, Chande RD, Lindsey DP, Mesiwala A, Villa TMT, Yerby SA et al (2020) The use of triangular implants to enhance sacropelvic fixation: a finite element investigation. Spine J 20(10):1717–1724. https://doi.org/10.1016/j.spinee.2020.05.552

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Holly Pope, Alexander Mebane, and John Pederson of Superior Medical Experts who provided assistance with PROSPERO protocol registration.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, have read and approved the final manuscript, and agree to be accountable for the work. RR: Conceptualization, Writing—Review & Editing. SDS: Data Curation; Formal Analysis; Writing—Original Draft, Visualization. TA: Supervision; Validation; Writing—review & editing.

Corresponding author

Correspondence to Samuel D. Stegelmann.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Non-financial interest

TA is a lecturer for Medtronic & Surgalign.

Ethical approval

No patient information was accessed in this systematic review and thus no ethical approval was necessary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, R., Stegelmann, S.D. & Andreshak, T. S2 alar-iliac screws are superior to traditional iliac screws for spinopelvic fixation in adult spinal deformity: a systematic review and meta-analysis. Spine Deform 12, 829–842 (2024). https://doi.org/10.1007/s43390-024-00834-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-024-00834-x

Keywords

Navigation