Cahill KS, Chi JH, Day A et al (2009) Prevalence, complications, and hospital charges associated with use of bone-morphogenetic proteins in spinal fusion procedures. JAMA 302(1):58–66. https://doi.org/10.1001/jama.2009.956
CAS
Article
PubMed
Google Scholar
Lipson SJ (2004) Spinal-fusion surgery—advances and concerns. N Engl J Med 350(7):643–644. https://doi.org/10.1056/NEJMp038162
CAS
Article
PubMed
Google Scholar
Hofler RC, Swong K, Martin B et al (2018) Risk of pseudoarthrosis after spinal fusion: analysis from the healthcare cost and utilization project. World Neurosurg 120:e194–e202. https://doi.org/10.1016/j.wneu.2018.08.026
Article
PubMed
Google Scholar
Reid JJ, Johnson JS, Wang JC (2011) Challenges to bone formation in spinal fusion. J Biomech 44(2):213–220. https://doi.org/10.1016/j.jbiomech.2010.10.021
Article
PubMed
Google Scholar
Kim YJ, Bridwell KH, Lenke LG et al (2005) Pseudarthrosis in primary fusions for adult idiopathic scoliosis: incidence, risk factors, and outcome analysis. Spine 30(4):468–474. https://doi.org/10.1097/01.brs.0000153392.74639.ea
Article
PubMed
Google Scholar
Wang MC, Chan L, Maiman DJ et al (2007) Complications and mortality associated with cervical spine surgery for degenerative disease in the United States. Spine 32(3):342–347. https://doi.org/10.1097/01.brs.0000254120.25411.ae
Article
PubMed
Google Scholar
Campana V et al (2014) Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 25(10):2445–2461. https://doi.org/10.1007/s10856-014-5240-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Grabowski G, Cornett CA (2013) Bone graft and bone graft substitutes in spine surgery: current concepts and controversies. J Am Acad Orthop Surg 21(1):51–60. https://doi.org/10.5435/JAAOS-21-01-51
Article
PubMed
Google Scholar
Dimitriou R, Mataliotakis GI, Angoules AG et al (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(2):S3-15. https://doi.org/10.1016/j.injury.2011.06.015
Article
PubMed
Google Scholar
Duarte RM, Varanda P, Reis RL et al (2017) Biomaterials and bioactive agents in spinal fusion. Tissue Eng Part B Rev 23(6):540–551. https://doi.org/10.1089/ten.TEB.2017.0072
Article
PubMed
Google Scholar
Gupta A, Kukkar N, Sharif K et al (2015) Bone graft substitutes for spine fusion: a brief review. World J Orthop 6(6):449–456. https://doi.org/10.5312/wjo.v6.i6.449
Article
PubMed
PubMed Central
Google Scholar
Peterson B, Whang PG, Iglesias R et al (2004) Osteoinductivity of commercially available demineralized bone matrix. Preparations in a spine fusion model. J Bone Joint Surg Am 86(10):2243–2250. https://doi.org/10.2106/00004623-200410000-00016
Article
PubMed
Google Scholar
Tilkeridis K, Touzopoulos P, Ververidis A et al (2014) Use of demineralized bone matrix in spinal fusion,". World J Orthop 5(1):30–37. https://doi.org/10.5312/wjo.v5.i1.30
Article
PubMed
PubMed Central
Google Scholar
Aghdasi B, Montgomery SR, Daubs MD et al (2013) A review of demineralized bone matrices for spinal fusion: the evidence for efficacy. Surgeon 11(1):39–48. https://doi.org/10.1016/j.surge.2012.08.001
CAS
Article
PubMed
Google Scholar
Mulconrey DS, Bridwell KH, Flynn J, Cronen GA, Rose PS (2008) “Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion,” (in eng). Spine 33(20):2153–2159. https://doi.org/10.1097/BRS.0b013e31817bd91e
Article
PubMed
Google Scholar
Choo QQ, Chiu CK, Lisitha KA et al (2018) Quantitative analysis of local bone graft harvested from the posterior elements during posterior spinal fusion in adolescent idiopathic scoliosis patients. J Orthop 16(1):74–79. https://doi.org/10.1016/j.jor.2018.12.004.PMID:30662243;PMCID:PMC6324765
Article
PubMed
PubMed Central
Google Scholar
Franzin FJ, Gotfryd AO, Neto NJ et al (2014) Radiographic and functional evaluation of the iliac bone graft in the treatment of adolescent idiopathic scoliosis. J Pediatr Orthop B 23(4):307–311. https://doi.org/10.1097/BPB.0000000000000037
Article
PubMed
Google Scholar
Kobayashi K, Ando K, Machino M et al (2020) Trends in medical costs for adolescent idiopathic scoliosis surgery in Japan. Global Spine J 10(8):1040–1045. https://doi.org/10.1177/2192568219886265
Article
PubMed
Google Scholar
Milinković ZB, Krneta O, Milicković S et al (2010) Are the additional grafts necessary? Acta Chir Iugosl 57(1):69–72. https://doi.org/10.2298/aci1001069m
Article
PubMed
Google Scholar
Pesenti S, Ghailane S, Varghese JJ et al (2017) Bone substitutes in adolescent idiopathic scoliosis surgery using sublaminar bands: is it useful? A case-control study. Int Orthop 41(10):2083–2090. https://doi.org/10.1007/s00264-017-3512-4
Article
PubMed
Google Scholar
Farshad M, Frey A, Jentzsch T et al (2021) Reducing the kyphosis effect of anterior short thoracolumbar/lumbar scoliosis correction with an autograft fulcrum effect. BMC Musculoskelet Disord 22(1):216. https://doi.org/10.1186/s12891-021-04083-1
Article
PubMed
PubMed Central
Google Scholar
Ouellet JA, Johnston CE 2nd (2002) Effect of grafting technique on the maintenance of coronal and sagittal correction in anterior treatment of scoliosis. Spine 27(19):2129–2135. https://doi.org/10.1097/00007632-200210010-00010 (Discussion 2135-6)
Article
PubMed
Google Scholar
Samartzis D, Bow C, Cheung JP et al (2016) Efficacy of postoperative pain management using continuous local anesthetic infusion at the iliac crest bone graft site in patients with adolescent idiopathic scoliosis: a parallel, double-blinded, randomized controlled pilot trial. Global Spine J. 6(3):220–228. https://doi.org/10.1055/s-0035-1558656
Article
PubMed
Google Scholar
Kager AN, Marks M, Bastrom T, Newton PO (2006) Morbidity of iliac crest bone graft harvesting in adolescent deformity surgery. J Pediatr Orthop 26(1):132–134. https://doi.org/10.1097/01.bpo.0000188996.36674.56
Article
PubMed
Google Scholar
Iwai C, Taneichi H, Inami S et al (2013) Clinical outcomes of combined anterior and posterior spinal fusion for dystrophic thoracolumbar spinal deformities of neurofibromatosis-1: fate of nonvascularized anterior fibular strut grafts. Spine 38(1):44–50. https://doi.org/10.1097/BRS.0b013e318261ec74
Article
PubMed
Google Scholar
Johari A, Shingade V, Gajiwala AL et al (2007) The use of irradiated allograft in a paediatric population: an Indian experience. Cell Tissue Bank 8(1):13–22. https://doi.org/10.1007/s10561-006-9001-4
CAS
Article
PubMed
Google Scholar
Jones KC, Andrish J, Kuivila T et al (2002) Radiographic outcomes using freeze-dried cancellous allograft bone for posterior spinal fusion in pediatric idiopathic scoliosis. J Pediatr Orthop 22(3):285–289
PubMed
Google Scholar
Watkins RG, Hussain N, Freeman BJ et al (2006) Anterior instrumentation for thoracolumbar adolescent idiopathic scoliosis: do structural interbody grafts preserve sagittal alignment better than morselized rib autografts? Spine 31(20):2337–2342. https://doi.org/10.1097/01.brs.0000240201.14208.68
Article
PubMed
Google Scholar
Izatt MT, Carstens A, Adam CJ et al (2015) Partial intervertebral fusion secures successful outcomes after thoracoscopic anterior scoliosis correction: a low-dose computed tomography study. Spine Deform 3(6):515–527. https://doi.org/10.1016/j.jspd.2015.04.007
Article
PubMed
Google Scholar
Theologis AA, Tabaraee E, Lin T, Spinal Deformity Study Group et al (2015) Type of bone graft or substitute does not affect outcome of spine fusion with instrumentation for adolescent idiopathic scoliosis. Spine 40(17):1345–1351. https://doi.org/10.1097/BRS.0000000000001002
Article
PubMed
Google Scholar
Lowe TG, Alongi PR, Smith DAB et al (2003) Anterior single rod instrumentation for thoracolumbar adolescent idiopathic scoliosis with and without the use of structural interbody support. Spine 28(19):2232–2241. https://doi.org/10.1097/01.BRS.0000085028.70985.39
Article
PubMed
Google Scholar
Hostin R, O’Brien M, McCarthy I et al (2016) Retrospective study of anterior interbody fusion rates and patient outcomes of using mineralized collagen and bone marrow aspirate in multilevel adult spinal deformity surgery. Clin Spine Surg 29(8):E384-388. https://doi.org/10.1097/BSD.0b013e318292468f
Article
PubMed
Google Scholar
Weinzapfel B, Son-Hing JP, Armstrong DG et al (2008) Fusion rates after thoracoscopic release and bone graft substitutes in idiopathic scoliosis. Spine 33(10):1079–1083. https://doi.org/10.1097/BRS.0b013e31816f69b3
Article
PubMed
Google Scholar
Sinagra Z, Cunningham G, Dillon D et al (2020) Proximal junctional kyphosis and rates of fusion following posterior instrumentation and spinal fusion for adolescent idiopathic scoliosis. ANZ J Surg 90(4):597–601. https://doi.org/10.1111/ans.15706
Article
PubMed
Google Scholar
Betz RR, Petrizzo AM, Kerner PJ et al (2006) Allograft versus no graft with a posterior multisegmented hook system for the treatment of idiopathic scoliosis. Spine 31(2):121–127. https://doi.org/10.1097/01.brs.0000194771.49774.77
Article
PubMed
Google Scholar
Knapp DR, Jones ET, Blanco JS et al (2005) Allograft bone in spinal fusion for adolescent idiopathic scoliosis. J Spinal Disord Tech 18:S73-76. https://doi.org/10.1097/01.bsd.0000128694.21405.80
Article
PubMed
Google Scholar
Price CT, Connolly JF, Carantzas AC et al (2003) Comparison of bone grafts for posterior spinal fusion in adolescent idiopathic scoliosis. Spine 28(8):793–798
PubMed
Google Scholar
Wang J, Zhao Y, Shen B et al (2010) Risk factor analysis of proximal junctional kyphosis after posterior fusion in patients with idiopathic scoliosis. Injury 41(4):415–420. https://doi.org/10.1016/j.injury.2010.01.001
Article
PubMed
Google Scholar
Buttermann GR, Glazer PA, Hu SS et al (2001) Anterior and posterior allografts in symptomatic thoracolumbar deformity. J Spinal Disord 14(1):54–66. https://doi.org/10.1097/00002517-200102000-00009
CAS
Article
PubMed
Google Scholar
Smith JS, Shaffrey E, Klineberg E et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003. https://doi.org/10.3171/2014.9.SPINE131176
Article
PubMed
Google Scholar
Bozzio AE, Hu X, Lieberman IH (2019) Cost and clinical outcome of adolescent idiopathic scoliosis surgeries-experience from a nonprofit community hospital. Int J Spine Surg 13(5):474–478. https://doi.org/10.14444/6063
Article
PubMed
PubMed Central
Google Scholar
Ong KL, Villarraga ML, Lau E et al (2010) Off-label use of bone morphogenetic proteins in the United States using administrative data. Spine 35:1794–1800. https://doi.org/10.1097/BRS.0b013e3181ecf6e4
Article
PubMed
Google Scholar
Bess S, Line BG, Lafage V et al (2014) Does recombinant human bone morphogenetic protein-2 use in adult spinal deformity increase complications and are complications associated with location of rhBMP-2 use? A prospective, multicenter study of 279 consecutive patients. Spine 39:233–242. https://doi.org/10.1097/BRS.0000000000000104
Article
PubMed
Google Scholar
Luhmann SJ, Bridwell KH, Cheng I et al (2005) Use of bone morphogenetic protein-2 for adult spinal deformity. Spine 30:S110-117. https://doi.org/10.1097/01.brs.0000175184.27407.6a
Article
PubMed
Google Scholar
Ruofeng Y, Cohen JR, Buser Z et al (2016) Trends of posterior long segment fusion with and without recombinant human bone morphogenetic protein 2 in patients with scoliosis. Global Spine J 6:422–431. https://doi.org/10.1055/s-0035-1564416
Article
PubMed
Google Scholar
Mulconrey DS, Bridwell KH, Flynn J et al (2008) Bone morphogenetic protein (RhBMP-2) as a substitute for iliac crest bone graft in multilevel adult spinal deformity surgery: minimum two-year evaluation of fusion. Spine 33:2153–2159. https://doi.org/10.1097/BRS.0b013e31817bd91e
Article
PubMed
Google Scholar
Maeda T, Buchowski JM, Kim YJ et al (2009) Long adult spinal deformity fusion to the sacrum using rhBMP-2 versus autogenous iliac crest bone graft. Spine 34:2205–2212. https://doi.org/10.1097/BRS.0b013e3181b0485c
Article
PubMed
Google Scholar
Kim HJ, Buchowski JM, Zebala LP et al (2013) RhBMP-2 is superior to iliac crest bone graft for long fusions to the sacrum in adult spinal deformity: 4- to 14-year follow-up. Spine 38:1209–1215. https://doi.org/10.1097/BRS.0b013e31828b656d
Article
PubMed
Google Scholar
Puvanesarajah V, Jain A, Cancienne JM et al (2017) BMP use and the risk of revision surgery after long posterolateral fusions in the elderly. Clin Spine Surg 30:E931–E937. https://doi.org/10.1097/BSD.0000000000000489
Article
PubMed
Google Scholar
Safaee MM, Dalle Ore CL, Zygourakis CC et al (2019) Estimating a price point for cost-benefit of bone morphogenetic protein in pseudarthrosis prevention for adult spinal deformity surgery. J Neurosurg Spine. https://doi.org/10.3171/2018.12.SPINE18613
Article
PubMed
Google Scholar
Jain A, Yeramaneni S, Kebaish KM et al (2020) Cost-utility analysis of rhBMP-2 use in adult spinal deformity surgery. Spine 45:1009–1015. https://doi.org/10.1097/BRS.0000000000003442
Article
PubMed
Google Scholar
Yoo JS, Ahn J, Patel DS et al (2019) An evaluation of biomaterials and osteobiologics for arthrodesis achievement in spine surgery. Ann Transl Med 7:S168. https://doi.org/10.21037/atm.2019.06.80
CAS
Article
PubMed
PubMed Central
Google Scholar
Ameri E, Behtash H, Mobini B et al. Bioactive glass versus autogenous iliac crest bone graft in adolescent idiopathic scoliosis surgery. Acta Medica Iranica 2009: 41–45
Hing KA, Revell PA, Smith N et al (2006) Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27:5014–5026. https://doi.org/10.1016/j.biomaterials.2006.05.039
CAS
Article
PubMed
Google Scholar
Harshavardhana NS, Noordeen MH (2015) Surgical results with the use of silicated calcium phosphate (SiCaP) as bone graft substitute in posterior spinal fusion (PSF) for adolescent idiopathic scoliosis (AIS). Scoliosis 10:27. https://doi.org/10.1186/s13013-015-0051-x
Article
PubMed
PubMed Central
Google Scholar
Mashoof AA, Siddiqui SA, Otero M et al (2002) Supplementation of autogenous bone graft with coralline hydroxyapatite in posterior spine fusion for idiopathic adolescent scoliosis. Orthopedics 25:1073–1076
Article
Google Scholar
Muschik M, Ludwig R, Halbhubner S et al (2001) Beta-tricalcium phosphate as a bone substitute for dorsal spinal fusion in adolescent idiopathic scoliosis: preliminary results of a prospective clinical study. Eur Spine J 10(2):S178-184. https://doi.org/10.1007/s005860100271
Article
PubMed
PubMed Central
Google Scholar
Delecrin J, Takahashi S, Gouin F et al (2000) A synthetic porous ceramic as a bone graft substitute in the surgical management of scoliosis: a prospective, randomized study. Spine 25(5):563-9. https://doi.org/10.1097/00007632-200003010-00006
CAS
Article
PubMed
Google Scholar
Ilharreborde B, Morel E, Fitoussi F et al (2008) Bioactive glass as a bone substitute for spinal fusion in adolescent idiopathic scoliosis: a comparative study with iliac crest autograft. J Pediatr Orthop 28:347–351. https://doi.org/10.1097/BPO.0b013e318168d1d4
Article
PubMed
Google Scholar
Lerner T, Bullmann V, Schulte TL et al (2009) A level-1 pilot study to evaluate of ultraporous beta-tricalcium phosphate as a graft extender in the posterior correction of adolescent idiopathic scoliosis. Eur Spine J 18:170–179. https://doi.org/10.1007/s00586-008-0844-1
Article
PubMed
Google Scholar
Lerner T, Liljenqvist U (2013) Silicate-substituted calcium phosphate as a bone graft substitute in surgery for adolescent idiopathic scoliosis. Eur Spine J 22(2):S185-194. https://doi.org/10.1007/s00586-012-2485-7
Article
PubMed
Google Scholar
Bazylinska U, Lewinska A, Lamch L, Wilk KA (2014) Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf A Physicochem Eng Asp 442:42–49. https://doi.org/10.1016/j.colsurfa.2013.02.023
CAS
Article
Google Scholar
Viswanathan VK, Rajaram Manoharan SR, Subramanian S et al (2019) Nanotechnology in spine surgery: a current update and critical review of the literature. World Neurosurg 123:142–155. https://doi.org/10.1016/j.wneu.2018.11.035
Article
PubMed
Google Scholar
Lee SS, Hsu EL, Mendoza M et al (2015) Gel scaffolds of BMP-2-binding peptide amphiphile nanofibers for spinal arthrodesis. Adv Healthc Mater 4(1):131–141. https://doi.org/10.1002/adhm.201400129
CAS
Article
PubMed
Google Scholar
Stylios G, Wan T, Giannoudis P (2007) Present status and future potential of enhancing bone healing using nanotechnology. Injury 38(1):S63-74. https://doi.org/10.1016/j.injury.2007.02.011
Article
PubMed
Google Scholar
Brannigan K, Griffin M (2016) An update into the application of nanotechnology in bone healing. Open Orthop J 30(10):808–823. https://doi.org/10.2174/1874325001610010808
Article
Google Scholar