Skip to main content
Log in

S2 alar-iliac screw versus traditional iliac screw for spinopelvic fixation: a systematic review of comparative biomechanical studies

  • Review Article
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

To review and compare biomechanical properties between S2 alar-iliac (S2AI) screws and traditional iliac screws for spinopelvic fixation.

Methods

A systematic review was performed according to PRISMA guidelines. All clinical, cadaveric, and finite-element model (FEM) studies that compared the biomechanical properties between S2AI screws and traditional iliac screws were included. Study methodological quality for cadaveric studies were analyzed using the Quality Appraisal for Cadaveric Studies (QUACS) scale.

Results

Eight studies (4 cadaveric, 4 FEM) analyzing 58 S2AI screws and 48 traditional iliac screws were included. According to QUACS, the overall methodological quality was “moderate to good” for all four cadaveric studies. All four cadaveric studies found no difference in biomechanical stiffness, screw toggle, rod strain, and/or load-to-failure between the S2AI screws and traditional iliac screws for spinopelvic fixation. All four FEM studies found that S2AI screws were associated with lower implant stresses compared to traditional iliac screws.

Conclusions

There is moderate biomechanical evidence to suggest that there is no significant difference in stability and stiffness between S2AI screws and traditional iliac screws for spinopelvic fixation. However, there is some evidence to support that the placement of S2AI screws may have lower implant stresses on the overall lumbosacral instrumentation compared to traditional iliac screws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Yasuda T, Hasegawa T, Yamato Y et al (2016) Lumbosacral junctional failures after long spinal fusion for adult spinal deformity-which vertebra is the preferred distal instrumented vertebra? Spine Deform 4(5):378–384. https://doi.org/10.1016/j.jspd.2016.03.001

    Article  PubMed  Google Scholar 

  2. El Dafrawy MH, Raad M, Okafor L et al (2019) Sacropelvic fixation: a comprehensive review. Spine Deform 7(4):509–516. https://doi.org/10.1016/j.jspd.2018.11.009

    Article  PubMed  Google Scholar 

  3. Allen BL Jr, Ferguson RL (1984) The Galveston technique of pelvic fixation with L-rod instrumentation of the spine. Spine (Phila Pa 1976) 9(4):388–394. https://doi.org/10.1097/00007632-198405000-00011

    Article  Google Scholar 

  4. Shabtai L, Andras LM, Portman M et al (2017) Sacral Alar Iliac (SAI) screws fail 75% less frequently than iliac screws in neuromuscular scoliosis. J Pediatr Orthop 37(8):e470–e475. https://doi.org/10.1097/BPO.0000000000000720

    Article  PubMed  Google Scholar 

  5. Sponseller PD, Zimmerman RM, Ko PS et al (2010) Low profile pelvic fixation with the sacral alar iliac technique in the pediatric population improves results at two-year minimum follow-up. Spine (Phila Pa 1976) 35(20):1887–1892. https://doi.org/10.1097/BRS.0b013e3181e03881

    Article  Google Scholar 

  6. Tsuchiya K, Bridwell KH, Kuklo TR et al (2006) Minimum 5-year analysis of L5–S1 fusion using sacropelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976) 31(3):303–308. https://doi.org/10.1097/01.brs.0000197193.81296.f1

    Article  Google Scholar 

  7. Shen FH, Mason JR, Shimer AL et al (2013) Pelvic fixation for adult scoliosis. Eur Spine J 22(Suppl 2):S265–S275. https://doi.org/10.1007/s00586-012-2525-3

    Article  PubMed  Google Scholar 

  8. Keorochana G, Arirachakaran A, Setrkraising K et al (2019) Comparison of complications and revisions after Sacral 2 alar iliac screw and iliac screw fixation for sacropelvic fixation in pediatric and adult populations: systematic review and meta-analysis. World Neurosurg 132:408-420.e1. https://doi.org/10.1016/j.wneu.2019.08.104

    Article  PubMed  Google Scholar 

  9. Gao Z, Sun X, Chen C et al (2021) Comparative radiological outcomes and complications of sacral-2-alar iliac screw versus iliac screw for sacropelvic fixation. Eur Spine J 30(8):2257–2270. https://doi.org/10.1007/s00586-021-06864-7

    Article  PubMed  Google Scholar 

  10. De la Garza RR, Nakhla J, Sciubba DM et al (2018) Iliac screw versus S2 alar-iliac screw fixation in adults: a meta-analysis. J Neurosurg Spine 30(2):253–258. https://doi.org/10.3171/2018.7.SPINE18710

    Article  Google Scholar 

  11. Liu G, Hasan MY, Wong HK (2018) Subcrestal Iliac-Screw: A Technical Note Describing a Free Hand, In-line, Low Profile Iliac Screw Insertion Technique to Avoid Side-connector Use and Reduce Implant Complications. Spine (Phila Pa 1976) 43(2):E68–E74. https://doi.org/10.1097/BRS.0000000000002239

    Article  Google Scholar 

  12. Elder BD, Ishida W, Lo SL et al (2017) Use of S2-Alar-iliac screws associated with less complications than iliac screws in adult lumbosacropelvic fixation. Spine (Phila Pa 1976) 42(3):E142–E149. https://doi.org/10.1097/BRS.0000000000001722

    Article  Google Scholar 

  13. Ishida W, Ramhmdani S, Casaos J et al (2019) Safety profile of lumbosacropelvic fixation in patients aged 60 years or older: comparison between S2-alar-iliac screws and conventional iliac screws. Clin Spine Surg 32(4):E200–E205. https://doi.org/10.1097/BSD.0000000000000806

    Article  PubMed  Google Scholar 

  14. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harris JD, Quatman CE, Manring MM et al (2014) How to write a systematic review. Am J Sports Med 42(11):2761–2768. https://doi.org/10.1177/0363546513497567

    Article  PubMed  Google Scholar 

  16. Wilke J, Krause F, Niederer D et al (2015) Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 226(5):440–446. https://doi.org/10.1111/joa.12292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Burda BU, O’Connor EA, Webber EM et al (2017) Estimating data from figures with a web-based program: considerations for a systematic review. Res Synth Methods 8(3):258–262. https://doi.org/10.1002/jrsm.1232

    Article  PubMed  Google Scholar 

  18. Drevon D, Fursa SR, Malcolm AL (2017) Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav Modif 41(2):323–339. https://doi.org/10.1177/0145445516673998

    Article  PubMed  Google Scholar 

  19. Slavin RE (1995) Best evidence synthesis: an intelligent alternative to meta-analysis. J Clin Epidemiol 48:9–18. https://doi.org/10.1016/0895-4356(94)00097-a

    Article  CAS  PubMed  Google Scholar 

  20. Hoernschemeyer DG, Pashuck TD, Pfeiffer FM (2017) Analysis of the s2 alar-iliac screw as compared with the traditional iliac screw: does it increase stability with sacroiliac fixation of the spine? Spine J 17(6):875–879. https://doi.org/10.1016/j.spinee.2017.02.001

    Article  PubMed  Google Scholar 

  21. Burns CB, Dua K, Trasolini NA et al (2016) Biomechanical comparison of spinopelvic fixation constructs: iliac screw versus S2-alar-iliac screw. Spine Deform 4(1):10–15. https://doi.org/10.1016/j.jspd.2015.07.008

    Article  PubMed  Google Scholar 

  22. O’Brien JR, Yu W, Kaufman BE et al (2013) Biomechanical evaluation of S2 alar-iliac screws: effect of length and quad-cortical purchase as compared with iliac fixation. Spine (Phila Pa 1976) 38(20):E1250–E1255. https://doi.org/10.1097/BRS.0b013e31829e17ff

    Article  Google Scholar 

  23. Von Glinski A, Pierre C, Frieler S et al (2021) Fixation strength of modified iliac screw trajectory compared to traditional iliac and S2 alar-iliac trajectories: a cadaveric study. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.07.065

    Article  Google Scholar 

  24. Casaroli G, Galbusera F, Chande R et al (2019) Evaluation of iliac screw, S2 alar-iliac screw and laterally placed triangular titanium implants for sacropelvic fixation in combination with posterior lumbar instrumentation: a finite element study. Eur Spine J 28(7):1724–1732. https://doi.org/10.1007/s00586-019-06006-0

    Article  PubMed  Google Scholar 

  25. Galbusera F, Casaroli G, Chande R et al (2020) Biomechanics of sacropelvic fixation: a comprehensive finite element comparison of three techniques. Eur Spine J 29(2):295–305. https://doi.org/10.1007/s00586-019-06225-5

    Article  PubMed  Google Scholar 

  26. Shin JK, Lim BY, Goh TS et al (2018) Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: a finite element analysis. PLoS One 13(8):e0201801. https://doi.org/10.1371/journal.pone.0201801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sohn S, Park TH, Chung CK et al (2018) Biomechanical characterization of three iliac screw fixation techniques: a finite element study. J Clin Neurosci 52:109–114. https://doi.org/10.1016/j.jocn.2018.03.002

    Article  PubMed  Google Scholar 

  28. Kebaish KM (2010) Sacropelvic fixation: techniques and complications. Spine (Phila Pa 1976) 35(25):2245–2251. https://doi.org/10.1097/BRS.0b013e3181f5cfae

    Article  Google Scholar 

  29. Jackson RJ, Gokaslan ZL (2000) Spinal-pelvic fixation in patients with lumbosacral neoplasms. J Neurosurg 92(1 Suppl):61–70. https://doi.org/10.3171/spi.2000.92.1.0061

    Article  CAS  PubMed  Google Scholar 

  30. Zdeblick TA (1993) A prospective, randomized study of lumbar fusion Preliminary results. Spine (Phila Pa 1976) 18(8):983–991. https://doi.org/10.1097/00007632-199306150-00006

    Article  CAS  Google Scholar 

  31. Schwab FJ, Nazarian DG, Mahmud F et al (1995) Effects of spinal instrumentation on fusion of the lumbosacral spine. Spine (Phila Pa 1976) 20(18):2023–2028. https://doi.org/10.1097/00007632-199509150-00014

    Article  CAS  Google Scholar 

  32. Cornaz F, Widmer J, Snedeker JG et al (2021) Cross-links in posterior pedicle screw-rod instrumentation of the spine: a systematic review on mechanical, biomechanical, numerical and clinical studies. Eur Spine J 30(1):34–49. https://doi.org/10.1007/s00586-020-06597-z

    Article  PubMed  Google Scholar 

  33. Doodkorte RJP, Vercoulen TFG, Roth AK et al (2021) Instrumentation techniques to prevent proximal junctional kyphosis and proximal junctional failure in adult spinal deformity correction-a systematic review of biomechanical studies. Spine J 21(5):842–854. https://doi.org/10.1016/j.spinee.2021.01.011

    Article  PubMed  Google Scholar 

  34. Doodkorte RJP, Roth AK, Arts JJ et al (2021) Biomechanical comparison of semirigid junctional fixation techniques to prevent proximal junctional failure after thoracolumbar adult spinal deformity correction. Spine J 21(5):855–864. https://doi.org/10.1016/j.spinee.2021.01.017

    Article  PubMed  Google Scholar 

  35. Viswanathan VK, Ganguly R, Minnema AJ et al (2018) Biomechanical assessment of proximal junctional semi-rigid fixation in long-segment thoracolumbar constructs. J Neurosurg Spine 30(2):184–192. https://doi.org/10.3171/2018.7.SPINE18136

    Article  PubMed  Google Scholar 

  36. Kleck CJ, Illing D, Lindley EM et al (2017) Strain in posterior instrumentation resulted by different combinations of posterior and anterior devices for long spine fusion constructs. Spine Deform 5(1):27–36. https://doi.org/10.1016/j.jspd.2016.09.045

    Article  PubMed  Google Scholar 

  37. Burneikiene S, Nelson EL, Mason A et al (2012) Complications in patients undergoing combined transforaminal lumbar interbody fusion and posterior instrumentation with deformity correction for degenerative scoliosis and spinal stenosis. Surg Neurol Int 3:25. https://doi.org/10.4103/2152-7806.92933

    Article  PubMed  PubMed Central  Google Scholar 

  38. Song M, Sun K, Li Z et al (2021) Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test. Sci Rep 11(1):12968. https://doi.org/10.1038/s41598-021-90686-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. La Barbera L, Villa T (2016) ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices–I: assembly procedure and validation. Proc Inst Mech Eng H 230(2):122–133. https://doi.org/10.1177/0954411915621587

    Article  PubMed  Google Scholar 

  40. Chang TL, Sponseller PD, Kebaish KM et al (2009) Low profile pelvic fixation: anatomic parameters for sacral alar-iliac fixation versus traditional iliac fixation. Spine (Phila Pa 1976) 34(5):436–440. https://doi.org/10.1097/BRS.0b013e318194128c

    Article  Google Scholar 

  41. Kuklo TR, Bridwell KH, Lewis SJ et al (2001) Minimum 2-year analysis of sacropelvic fixation and L5–S1 fusion using S1 and iliac screws. Spine (Phila Pa 1976) 26(18):1976–1983. https://doi.org/10.1097/00007632-200109150-00007

    Article  CAS  Google Scholar 

  42. Sohn S, Chung CK, Kim YJ et al (2016) Modified iliac screw fixation: technique and clinical application. Acta Neurochir (Wien) 158(5):975–980. https://doi.org/10.1007/s00701-016-2772-x

    Article  Google Scholar 

Download references

Funding

No financial support was provided to complete this research.

Author information

Authors and Affiliations

Authors

Contributions

TH made substantial contributions to the conception and design of work, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. CS, JFL, BP, VH made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work. CS, DSH senior surgeon who made substantial contributions to the acquisition, analysis, and interpretation of the data, drafted the work, approved version to be published, and agreed to be accountable for all aspects of work.

Corresponding author

Correspondence to Takashi Hirase.

Ethics declarations

Conflict of interest

Takashi Hirase, Caleb Shin, Jeremiah Ling, Brian Phelps, and Varan Haghshenas declare no potential conflicts of interest with respect to research, authorship, and/or publication of this article. Comron Saifi has the following disclosures: Acquisition of Vertera Inc. by NuVasive’ Shares: Stock or stock Options; Nuvasive: Paid consultant. Darrell S Hanson has the following disclosures: DePuy, A Johnson & Johnson Company: IP royalties; Paid consultant; Paid presenter or speaker; Medtronic Sofamor Danek: Paid consultant; Paid presenter or speaker.

Ethical approval

No ethical approval was required for this systematic review.

Consent to participate

This work did not require the use of informed consent.

Consent for publication

Consent for publication was completed by all authors in this work.

Informed consent

This systematic review did not require the use of informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirase, T., Shin, C., Ling, J. et al. S2 alar-iliac screw versus traditional iliac screw for spinopelvic fixation: a systematic review of comparative biomechanical studies. Spine Deform 10, 1279–1288 (2022). https://doi.org/10.1007/s43390-022-00528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-022-00528-2

Keywords

Navigation