Ohrt-Nissen S, Hallager DW, Karbo T et al (2017) Radiographic and functional outcome in adolescent idiopathic scoliosis operated with hook/hybrid versus all-pedicle screw instrumentation—a retrospective study in 149 patients. Spine Deform 5:401–408. https://doi.org/10.1016/j.jspd.2017.05.002
Article
PubMed
Google Scholar
Kim YJ, Lenke LG, Cho SK et al (2004) Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 29:2040–2048. https://doi.org/10.1097/01.brs.0000138268.12324.1a
Article
PubMed
Google Scholar
Yilmaz G, Borkhuu B, Dhawale AA et al (2012) Comparative analysis of hook, hybrid, and pedicle screw instrumentation in the posterior treatment of adolescent idiopathic scoliosis. J Pediatr Orthop 32:490–499. https://doi.org/10.1097/BPO.0b013e318250c629
Article
PubMed
Google Scholar
Li G, Lv G, Passias P, Kozanek M et al (2010) Complications associated with thoracic pedicle screws in spinal deformity. Eur Spine J 19:1576–1584. https://doi.org/10.1007/s00586-010-1316-y
Article
PubMed
PubMed Central
Google Scholar
Di Silvestre M, Parisini P, Lolli F et al (2007) Complications of thoracic pedicle screws in scoliosis treatment. Spine 32:1655–1661. https://doi.org/10.1097/BRS.0b013e318074d604
Article
PubMed
Google Scholar
Hicks JM, Singla A, Shen FH et al (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine 35:E465-470. https://doi.org/10.1097/BRS.0b013e3181d1021a
Article
PubMed
Google Scholar
Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146. https://doi.org/10.1007/s00586-003-0586-z
CAS
Article
PubMed
Google Scholar
Zhang K, Chang Y, Fan F et al (2015) Estimation of stature from radiologic anthropometry of the lumbar vertebral dimensions in Chinese. Leg Med Tokyo Jpn 17:483–488. https://doi.org/10.1016/j.legalmed.2015.10.004
Article
Google Scholar
Storer SK, Vitale MG, Hyman JE et al (2005) Correction of adolescent idiopathic scoliosis using thoracic pedicle screw fixation versus hook constructs. J Pediatr Orthop 25:415–419. https://doi.org/10.1097/01.mph.0000165134.38120.87
Article
PubMed
Google Scholar
Cheng I, Kim Y, Gupta MC et al (2005) Apical sublaminar wires versus pedicle screws–which provides better results for surgical correction of adolescent idiopathic scoliosis? Spine 30:2104–2112. https://doi.org/10.1097/01.brs.0000179261.70845.b7
Article
PubMed
Google Scholar
Palmisani M, Dema E, Cervellati S et al (2018) Hybrid constructs pedicle screw with apical sublaminar bands versus pedicle screws only for surgical correction of adolescent idiopathic scoliosis. Eur Spine J 27:150–156. https://doi.org/10.1007/s00586-018-5625-x
Article
PubMed
Google Scholar
Trent CG. Spine Surgery. Techniques, Complication Avoidance, and Management. Vols. 1 and 2. Edited by Edward C. Benzel. New York, Churchill Livingstone, 1999. $325.00, 1538 pp. JBJS 2000;82:756
Ferrando A, Bas P, Bas T (2017) Late neurological complications due to laminar hook compression in idiopathic scoliosis surgery. Spinal Cord Ser Cases 3:17081. https://doi.org/10.1038/s41394-017-0009-8
Article
PubMed
PubMed Central
Google Scholar
Hyun S-J, Lee BH, Park J-H et al (2017) Proximal junctional kyphosis and proximal junctional failure following adult spinal deformity surgery. Korean J Spine 14:126–132. https://doi.org/10.14245/kjs.2017.14.4.126
Article
PubMed
PubMed Central
Google Scholar
Helgeson MD, Shah SA, Newton PO et al (2010) Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine 35:177–181. https://doi.org/10.1097/BRS.0b013e3181c77f8c
Article
PubMed
Google Scholar
Kim YJ, Bridwell KH, Lenke LG et al (2005) Proximal junctional kyphosis in adolescent idiopathic scoliosis following segmental posterior spinal instrumentation and fusion: minimum 5-year follow-up. Spine 30:2045–2050. https://doi.org/10.1097/01.brs.0000179084.45839.ad
Article
PubMed
Google Scholar
Polly DW, Potter BK, Kuklo T et al (2004) Volumetric spinal canal intrusion: a comparison between thoracic pedicle screws and thoracic hooks. Spine 29:63–69. https://doi.org/10.1097/01.BRS.0000105525.06564.56
Article
PubMed
Google Scholar
Jackson KL, Devine JG (2016) The effects of obesity on spine surgery: a systematic review of the literature. Glob Spine J 6:394–400. https://doi.org/10.1055/s-0035-1570750
Article
Google Scholar
Upasani VV, Caltoum C, Petcharaporn M et al (2008) Does obesity affect surgical outcomes in adolescent idiopathic scoliosis? Spine 33:295–300. https://doi.org/10.1097/BRS.0b013e3181624573
Article
PubMed
Google Scholar
Obesity Negatively Affects Spinal Surgery in Idiopathic Scoliosis n.d. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586037/. Accessed 9 Apr 2020
Tarrant RC, Queally JM, Moore DP et al (2018) Prevalence and impact of low body mass index on outcomes in patients with adolescent idiopathic scoliosis: a systematic review. Eur J Clin Nutr 72:1463–1484. https://doi.org/10.1038/s41430-018-0095-0
Article
PubMed
Google Scholar
Clark EM, Taylor HJ, Harding I et al (2014) Association between components of body composition and scoliosis: a prospective cohort study reporting differences identifiable before the onset of scoliosis. J Bone Miner Res 29:1729–1736. https://doi.org/10.1002/jbmr.2207
Article
PubMed
Google Scholar
Zheng Y, Dang Y, Wu X et al (2017) Epidemiological study of adolescent idiopathic scoliosis in Eastern China. J Rehabil Med 49:512–519. https://doi.org/10.2340/16501977-2240
Article
PubMed
Google Scholar
Hengwei F, Zifang H, Qifei W et al (2016) Prevalence of idiopathic scoliosis in Chinese schoolchildren: a large, population-based study. Spine 41:259–264. https://doi.org/10.1097/BRS.0000000000001197
Article
PubMed
Google Scholar
Albano J, Lentz J, Stockton R et al (2019) Demographic analysis of lumbar pedicle diameters in a diverse population. Asian Spine J 13:410–416. https://doi.org/10.31616/asj.2018.0195
Article
PubMed
PubMed Central
Google Scholar
Body Mass Index and sagittal lumbar balance (2020) A geometric morphometrics approach. Eur J Anat 22:37–49
Google Scholar
Soh TLT, Kho KC, Lim ZK et al (2021) Morphological parameters of the thoracic pedicle in an Asian population: a magnetic resonance imaging-based study of 3324 pedicles. Glob Spine J 11:437–441. https://doi.org/10.1177/2192568220906137
Article
Google Scholar
Schmid SL, Buck FM, Böni T, Farshad M (2016) Radiographic measurement error of the scoliotic curve angle depending on positioning of the patient and the side of scoliotic curve. Eur Spine J 25:379–384. https://doi.org/10.1007/s00586-015-4259-5
Article
PubMed
Google Scholar
Brown JC, Axelgaard J, Howson DC (1984) Multicenter trial of a noninvasive stimulation method for idiopathic scoliosis. A summary of early treatment results. Spine 9:382–387. https://doi.org/10.1097/00007632-198405000-00010
CAS
Article
PubMed
Google Scholar
Liljenqvist U, Hackenberg L, Link T et al (2001) Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 67:157–163
CAS
PubMed
Google Scholar
Hackenberg L, Link T, Liljenqvist U (2002) Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine 27:937–942. https://doi.org/10.1097/00007632-200205010-00010
Article
PubMed
Google Scholar
Tai C-L, Chen L-H, Lee D-M et al (2014) Biomechanical comparison of different combinations of hook and screw in one spine motion unit—an experiment in porcine model. BMC Musculoskelet Disord 15:197. https://doi.org/10.1186/1471-2474-15-197
Article
PubMed
PubMed Central
Google Scholar
Ashman R, Galpin R, Corin J et al (1990) Biomechanical analysis of pedicle screw instrumentation systems in a Corpectomy model. Spine 14:1398–1405. https://doi.org/10.1097/00007632-198912000-00019
Article
Google Scholar
Clements DH, Betz RR, Newton PO et al (2009) Correlation of scoliosis curve correction with the number and type of fixation anchors. Spine 34:2147–2150. https://doi.org/10.1097/BRS.0b013e3181adb35d
Article
PubMed
Google Scholar
Lee J, Park Y-S (2016) Proximal junctional kyphosis: diagnosis, pathogenesis, and treatment. Asian Spine J 10:593. https://doi.org/10.4184/asj.2016.10.3.593
Article
PubMed
PubMed Central
Google Scholar
Kim YJ, Lenke LG, Bridwell KH et al (2007) Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: incidence and risk factor analysis of 410 cases. Spine 32:2731–2738. https://doi.org/10.1097/BRS.0b013e31815a7ead
Article
PubMed
Google Scholar
Polly DW, Larson AN, Sponseller PD et al (2019) 147. Prospective randomized controlled trial of implant density in AIS: results of the Minimize Implants Maximize Outcomes study. Spine J 19:70–71. https://doi.org/10.1016/j.spinee.2019.05.161
Article
Google Scholar
Morrissy RT, Goldsmith GS, Hall EC et al (1990) Measurement of the Cobb angle on radiographs of patients who have scoliosis. Evaluation of intrinsic error. J Bone Jt Surg Am 72:320–327
CAS
Article
Google Scholar
Carman DL, Browne RH, Birch JG (1990) Measurement of scoliosis and kyphosis radiographs. Intraobserver and interobserver variation. J Bone Jt Surg Am 72:328–333
CAS
Article
Google Scholar
Kang KS, Song K-S, Lee JS et al (2011) Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter. Eur Spine J 20:414–421. https://doi.org/10.1007/s00586-010-1560-1
Article
PubMed
Google Scholar