Skip to main content

Advertisement

Log in

Genetic animal modeling for idiopathic scoliosis research: history and considerations

  • Genetics
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Purpose

Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of musculoskeletal surgery and research.

Methods

In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations for researchers.

Results

Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in humans, scoliosis is a difficult condition to replicate in model organisms.

Conclusion

We advocate careful selection of animal models based on the scientific question and introduce gaps and limitations in the current literature. We advocate future research efforts to include animal models with multiple characterized genetic or environmental perturbations to reflect current understanding of the human condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data and/or code availability

This is a narrative review; no data and or/code was generated.

Abbreviations

IS:

Idiopathic scoliosis

GWAS:

Genome-wide association study

QTL:

Quantitative trait locus

References

  1. Miller NH, Schwab DL, Sponseller PD et al (2001) Characterization of idiopathic scoliosis in a clinically well-defined population. Clin Orthop Relat Res 392:349–357

    Article  Google Scholar 

  2. Roach JW (1999) Adolescent idiopathic scoliosis. Orthop Clin N Am 30(3):353–365 (vii-viii)

    Article  CAS  Google Scholar 

  3. Asher MA, Burton DC (2006) Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cowell HR, Hall JN, MacEwen GD (1972) Genetic aspects of idiopathic scoliosis. A Nicholas Andry Award essay, 1970. Clin Orthop Relat Res 86:121–131

    Article  CAS  PubMed  Google Scholar 

  5. Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Jt Surg Am 55(5):974–982

    Article  CAS  Google Scholar 

  6. Bonaiti C, Feingold J, Briard ML et al (1976) Genetics of idiopathic scoliosis. Helv Paediatr Acta 31(3):229–240

    CAS  PubMed  Google Scholar 

  7. Czeizel A, Bellyei A, Barta O et al (1978) Genetics of adolescent idiopathic scoliosis. J Med Genet 15(6):424–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22(17):2009–2014 (discussion 2015)

    Article  CAS  Google Scholar 

  9. Inoue M, Minami S, Kitahara H et al (1998) Idiopathic scoliosis in twins studied by DNA fingerprinting: the incidence and type of scoliosis. J Bone Jt Surg Br 80(2):212–217

    Article  CAS  Google Scholar 

  10. Aksenovich TI, Zaidman AM, Zorkol’tseva IV et al (1999) New models of inheritance of complex characteristics and their use in segregation analysis of idiopathic scoliosis. Genetika 35(2):255–262

    CAS  PubMed  Google Scholar 

  11. Andersen MO, Thomsen K, Kyvik KO (2007) Adolescent idiopathic scoliosis in twins: a population-based survey. Spine (Phila Pa 1976) 32(8):927–930

    Article  Google Scholar 

  12. Ward K, Ogilvie J, Argyle V et al (2010) Polygenic inheritance of adolescent idiopathic scoliosis: a study of extended families in Utah. Am J Med Genet A 152A(5):1178–1188

    Article  PubMed  Google Scholar 

  13. Tang NL, Yeung HY, Hung VW et al (2012) Genetic epidemiology and heritability of AIS: A study of 415 Chinese female patients. J Orthop Res 30(9):1464–1469

    Article  PubMed  Google Scholar 

  14. Kou I, Takahashi Y, Johnson TA et al (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679

    Article  CAS  PubMed  Google Scholar 

  15. Xu JF, Yang GH, Pan XH et al (2015) Association of GPR126 gene polymorphism with adolescent idiopathic scoliosis in Chinese populations. Genomics 105(2):101–107

    Article  CAS  PubMed  Google Scholar 

  16. Qin X, Xu L, Xia C et al (2017) Genetic variant of GPR126 gene is functionally associated with adolescent idiopathic scoliosis in Chinese population. Spine (Phila Pa 1976) 42(19):E1098–E1103

    Article  Google Scholar 

  17. Man GC, Tang NL, Chan TF et al (2018) Replication study for the association of GWAS-associated loci with adolescent idiopathic scoliosis susceptibility and curve progression in a Chinese population. Spine (Phila Pa 1976) 44:464–471

    Article  Google Scholar 

  18. Kou I, Watanabe K, Takahashi Y et al (2018) A multi-ethnic meta-analysis confirms the association of rs6570507 with adolescent idiopathic scoliosis. Sci Rep 8(1):11575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu G, Liu S, Lin M et al (2018) Genetic polymorphisms of GPR126 are functionally associated with PUMC classifications of adolescent idiopathic scoliosis in a Northern Han population. J Cell Mol Med 22(3):1964–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi Y, Kou I, Takahashi A et al (2011) A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat Genet 43(12):1237–1240

    Article  CAS  PubMed  Google Scholar 

  21. Fan YH, Song YQ, Chan D et al (2012) SNP rs11190870 near LBX1 is associated with adolescent idiopathic scoliosis in southern Chinese. J Hum Genet 57(4):244–246

    Article  CAS  PubMed  Google Scholar 

  22. Nelson LM, Chettier R, Ogilvie JW, et Al (2011) Candidate genes for susceptibility of adolescent idiopathic scoliosis identified through a large genome-wide association study. In: Scoliosis research society 46th annual meeting & course, Louisville, KY

  23. Gao W, Peng Y, Liang G et al (2013) Association between common variants near LBX1 and adolescent idiopathic scoliosis replicated in the Chinese Han population. PLoS ONE 8(1):e53234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang H, Qiu X, Dai J et al (2013) Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur Spine J 22(2):282–286

    Article  PubMed  Google Scholar 

  25. Londono D, Kou I, Johnson TA et al (2014) A meta-analysis identifies adolescent idiopathic scoliosis association with LBX1 locus in multiple ethnic groups. J Med Genet 51(6):401–406

    Article  CAS  PubMed  Google Scholar 

  26. Grauers A, Wang J, Einarsdottir E et al (2015) Candidate gene analysis and exome sequencing confirm LBX1 as a susceptibility gene for idiopathic scoliosis. Spine J 15(10):2239–2246

    Article  PubMed  Google Scholar 

  27. Chettier R, Nelson L, Ogilvie JW et al (2015) Haplotypes at LBX1 have distinct inheritance patterns with opposite effects in adolescent idiopathic scoliosis. PLoS ONE 10(2):e0117708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Cao Y, Min J, Zhang Q et al (2016) Associations of LBX1 gene and adolescent idiopathic scoliosis susceptibility: a meta-analysis based on 34,626 subjects. BMC Musculoskelet Disord 17:309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhu Z, Xu L, Leung-Sang Tang N et al (2017) Genome-wide association study identifies novel susceptible loci and highlights Wnt/beta-catenin pathway in the development of adolescent idiopathic scoliosis. Hum Mol Genet 26(8):1577–1583

    Article  CAS  PubMed  Google Scholar 

  30. Liu S, Wu N, Zuo Y et al (2017) Genetic polymorphism of LBX1 is associated with adolescent idiopathic scoliosis in northern Chinese Han population. Spine (Phila Pa 1976) 42(15):1125–1129

    Article  Google Scholar 

  31. Nada D, Julien C, Samuels ME et al (2018) A replication study for association of LBX1 locus with adolescent idiopathic scoliosis in French-Canadian population. Spine (Phila Pa 1976) 43(3):172–178

    Article  Google Scholar 

  32. Li YL, Gao SJ, Xu H et al (2018) The association of rs11190870 near LBX1 with the susceptibility and severity of AIS, a meta-analysis. Int J Surg 54(Pt A):193–200

    Article  PubMed  Google Scholar 

  33. Dunwoodie SL, Kusumi K (2018) The genetics and development of scoliosis. Springer, Cham (p. 1 online resource (XII, 199 pages 29 illustrations, 12 illustrations in color))

    Google Scholar 

  34. Sarwark JF, Castelein RM, Maqsood A et al (2019) The biomechanics of induction in adolescent idiopathic scoliosis: theoretical factors. J Bone Jt Surg Am 101(6):e22

    Article  Google Scholar 

  35. Gorman KF, Breden F (2007) Teleosts as models for human vertebral stability and deformity. Comp Biochem Physiol C Toxicol Pharmacol 145(1):28–38

    Article  PubMed  CAS  Google Scholar 

  36. Janssen MM, de Wilde RF, Kouwenhoven JW et al (2011) Experimental animal models in scoliosis research: a review of the literature. Spine J 11(4):347–358

    Article  PubMed  Google Scholar 

  37. Man GC, Wang WW, Yim AP et al (2014) A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int J Mol Sci 15(9):16484–16499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boswell CW, Ciruna B (2017) Understanding idiopathic scoliosis: a new zebrafish school of thought. Trends Genet 33(3):183–196

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Gray RS (2018) Animal models of idiopathic scoliosis. In: Kusumi K, Dunwoodie SL (eds) The genetics and development of scoliosis. Springer, Cham, pp 107–138

    Chapter  Google Scholar 

  40. Ericsson AC, Crim MJ, Franklin CL (2013) A brief history of animal modeling. Mo Med 110(3):201–205

    PubMed  PubMed Central  Google Scholar 

  41. Pozeg ZI, Flamm ES (2009) Vesalius and the 1543 Epitome of his De humani corporis fabrica librorum: a uniquely illuminated copy. Pap Bibliogr Soc Am 103(2):199–220

    PubMed  Google Scholar 

  42. Morse HC (1978) Origins of inbred mice. Academic Press, New York, p xvi

    Google Scholar 

  43. van der Worp HB, Howells DW, Sena ES et al (2010) Can animal models of disease reliably inform human studies? PLoS Med 7(3):e1000245

    Article  PubMed  PubMed Central  Google Scholar 

  44. McGonigle P, Ruggeri B (2014) Animal models of human disease: challenges in enabling translation. Biochem Pharmacol 87(1):162–171

    Article  CAS  PubMed  Google Scholar 

  45. Mestas J, Hughes CC (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    Article  CAS  PubMed  Google Scholar 

  46. Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2(6):875–894

    Article  CAS  PubMed  Google Scholar 

  47. Cheon DJ, Orsulic S (2011) Mouse models of cancer. Annu Rev Pathol 6:95–119

    Article  CAS  PubMed  Google Scholar 

  48. Zschaler J, Schlorke D, Arnhold J (2014) Differences in innate immune response between man and mouse. Crit Rev Immunol 34(5):433–454

    PubMed  Google Scholar 

  49. Hugenholtz F, de Vos WM (2018) Mouse models for human intestinal microbiota research: a critical evaluation. Cell Mol Life Sci 75(1):149–160

    Article  CAS  PubMed  Google Scholar 

  50. Weller MG (2018) Ten basic rules of antibody validation. Anal Chem Insights 13:1177390118757462

    Article  PubMed  PubMed Central  Google Scholar 

  51. Allen MJ, Hankenson KD, Goodrich L et al (2017) Ethical use of animal models in musculoskeletal research. J Orthop Res 35(4):740–751

    Article  PubMed  Google Scholar 

  52. Casaroli G, Wade K, Villa T, Wilke HJ (2018) In: Biomechanics of the spine. p 279–296

  53. Alini M, Eisenstein SM, Ito K et al (2008) Are animal models useful for studying human disc disorders/degeneration? Eur Spine J 17(1):2–19

    Article  PubMed  Google Scholar 

  54. Drespe IH, Polzhofer GK, Turner AS et al (2005) Animal models for spinal fusion. Spine J 5(6 Suppl):209S-216S

    Article  PubMed  Google Scholar 

  55. Sharif-Alhoseini M, Khormali M, Rezaei M et al (2017) Animal models of spinal cord injury: a systematic review. Spinal Cord 55(8):714–721

    Article  CAS  PubMed  Google Scholar 

  56. Schimandle JH, Boden SD (1994) Spine update. The use of animal models to study spinal fusion. Spine (Phila Pa 1976) 19(17):1998–2006

    Article  CAS  Google Scholar 

  57. Stavrakis AI, Loftin AH, Lord EL et al (2015) Current Animal Models of Postoperative Spine Infection and Potential Future Advances. Front Med (Lausanne) 2:34

    CAS  Google Scholar 

  58. Gomes PS, Fernandes MH (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45(1):14–24

    Article  CAS  PubMed  Google Scholar 

  59. Mural RJ, Adams MD, Myers EW et al (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296(5573):1661–1671

    Article  CAS  PubMed  Google Scholar 

  60. Josephson A, Greitz D, Klason T et al (2001) A spinal thecal sac constriction model supports the theory that induced pressure gradients in the cord cause edema and cyst formation. Neurosurgery 48(3):636–645

    Article  CAS  PubMed  Google Scholar 

  61. O’Connor G, Jeffrey E, Madorma D et al (2018) Investigation of Microbiota Alterations and Intestinal Inflammation Post-Spinal Cord Injury in Rat Model. J Neurotrauma 35(18):2159–2166

    Article  PubMed  PubMed Central  Google Scholar 

  62. Harikrishnan VS, Krishnan LK, Abelson KSP (2019) A novel technique to develop thoracic spinal laminectomy and a methodology to assess the functionality and welfare of the contusion spinal cord injury (SCI) rat model. PLoS ONE 14(7):e0219001

    Article  CAS  Google Scholar 

  63. Byrnes KR, Fricke ST, Faden AI (2010) Neuropathological differences between rats and mice after spinal cord injury. J Magn Reson Imaging JMRI 32(4):836–846

    Article  PubMed  Google Scholar 

  64. Szpirer C (2020) Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 27(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9(10):1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chakrabarti S, Streisinger G, Singer F et al (1983) Frequency of gamma-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103(1):109–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Grunwald DJ, Streisinger G (1992) Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res 59(2):103–116

    Article  CAS  PubMed  Google Scholar 

  68. Tavares B, Santos Lopes S (2013) The importance of zebrafish in biomedical research. Acta Med Port 26(5):583–592

    Article  PubMed  Google Scholar 

  69. Essner JJ, Amack JD, Nyholm MK et al (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132(6):1247–1260

    Article  CAS  PubMed  Google Scholar 

  70. Grimes DT, Boswell CW, Morante NF et al (2016) Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to spine curvature. Science 352(6291):1341–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gorman KF, Breden F (2009) Idiopathic-type scoliosis is not exclusive to bipedalism. Med Hypotheses 72(3):348–352

    Article  CAS  PubMed  Google Scholar 

  72. Hayes M, Gao X, Yu LX et al (2014) ptk7 mutant zebrafish models of congenital and idiopathic scoliosis implicate dysregulated Wnt signalling in disease. Nat Commun 5:4777

    Article  CAS  PubMed  Google Scholar 

  73. Cantaut-Belarif Y, Sternberg JR, Thouvenin O et al (2018) The Reissner fiber in the cerebrospinal fluid controls morphogenesis of the body axis. Curr Biol 28(15):2479-2486e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Troutwine B, Gontarz P, Minowa R et al (2019) The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. bioRxiv

  75. Yaman O, Dalbayrak S (2014) Idiopathic scoliosis. Turk Neurosurg 24(5):646–657

    PubMed  Google Scholar 

  76. Liu Z, Tam EM, Sun GQ et al (2012) Abnormal leptin bioavailability in adolescent idiopathic scoliosis: an important new finding. Spine (Phila Pa 1976) 37(7):599–604

    Article  Google Scholar 

  77. Zanatta LC, Boguszewski CL, Borba VZ et al (2014) Osteocalcin, energy and glucose metabolism. Arq Bras Endocrinol Metabol 58(5):444–451

    Article  PubMed  Google Scholar 

  78. Morcuende JA, Minhas R, Dolan L et al (2003) Allelic variants of human melatonin 1A receptor in patients with familial adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 28(17):2025–2028

    Article  Google Scholar 

  79. Moreau A, Wang DS, Forget S et al (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29(16):1772–1781

    Article  Google Scholar 

  80. Letellier K, Azeddine B, Parent S et al (2008) Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J Pineal Res 45(4):383–393

    Article  CAS  PubMed  Google Scholar 

  81. Girardo M, Bettini N, Dema E et al (2011) The role of melatonin in the pathogenesis of adolescent idiopathic scoliosis (AIS). Eur Spine J 20(Suppl 1):S68-74

    Article  PubMed  Google Scholar 

  82. Man GC, Wong JH, Wang WW et al (2011) Abnormal melatonin receptor 1B expression in osteoblasts from girls with adolescent idiopathic scoliosis. J Pineal Res 50(4):395–402

    Article  CAS  PubMed  Google Scholar 

  83. Zamecnik J, Krskova L, Hacek J et al (2016) Etiopathogenesis of adolescent idiopathic scoliosis: Expression of melatonin receptors 1A/1B, calmodulin and estrogen receptor 2 in deep paravertebral muscles revisited. Mol Med Rep 14(6):5719–5724

    Article  CAS  PubMed  Google Scholar 

  84. Machida M, Dubousset J, Imamura Y et al (1993) An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine (Phila Pa 1976) 18(12):1609–1615

    Article  CAS  Google Scholar 

  85. Machida M, Dubousset J, Imamura Y et al (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Jt Surg Br 77(1):134–138

    Article  CAS  Google Scholar 

  86. Bagnall K, Raso VJ, Moreau M et al (1999) The effects of melatonin therapy on the development of scoliosis after pinealectomy in the chicken. J Bone Jt Surg Am 81(2):191–199

    Article  CAS  Google Scholar 

  87. Akel I, Kocak O, Bozkurt G et al (2009) The effect of calmodulin antagonists on experimental scoliosis: a pinealectomized chicken model. Spine (Phila Pa 1976) 34(6):533–538

    Article  Google Scholar 

  88. Fagan AB, Kennaway DJ, Oakley AP (2009) Pinealectomy in the chicken: a good model of scoliosis? Eur Spine J 18(8):1154–1159

    Article  PubMed  PubMed Central  Google Scholar 

  89. Langenskiold A, Michelsson JE (1961) Experimental progressive scoliosis in the rabbit. J Bone Jt Surg Br 43-B:116–120

    Article  CAS  Google Scholar 

  90. Robin GC, Stein H (1975) Experimental scoliosis in primates. Failure of a technique. J Bone Jt Surg Br 57(2):142–145

    Article  CAS  Google Scholar 

  91. Thomas S, Dave PK (1985) Experimental scoliosis in monkeys. Acta Orthop Scand 56(1):43–46

    Article  CAS  PubMed  Google Scholar 

  92. Stilwell DL Jr (1962) Structural deformities of vertebrae. Bone adaptation and modeling in experimental scoliosis and kyphosis. J Bone Jt Surg Am 44-A:611–634

    Article  Google Scholar 

  93. Cheung KM, Wang T, Poon AM et al (2005) The effect of pinealectomy on scoliosis development in young nonhuman primates. Spine (Phila Pa 1976) 30(18):2009–2013

    Article  Google Scholar 

  94. Bagnall KM, Ford DM, McFadden KD et al (1983) A comparison of vertebral muscle fiber characteristics between human and monkey tissue. Acta Anat (Basel) 117(1):51–57

    Article  CAS  Google Scholar 

  95. Simmons HA (2016) Age-associated pathology in rhesus macaques (Macaca mulatta). Vet Pathol 53(2):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hernandez-Godinez B, Ibanez-Contreras A, Perdigon-Castaneda G et al (2010) Radiographic incidence of spinal osteopathologies in captive rhesus monkeys (Macaca mulatta). Comp Med 60(5):396–399

    CAS  PubMed  PubMed Central  Google Scholar 

  97. McCoy AM (2015) Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 52(5):803–818

    Article  CAS  PubMed  Google Scholar 

  98. Permuy M, Lopez-Pena M, Munoz F et al (2019) Rabbit as model for osteoporosis research. J Bone Miner Metab 37(4):573–583

    Article  PubMed  Google Scholar 

  99. Cervera-Irimia J, Gonzalez-Miranda A, Riquelme-Garcia O et al. (2019) Scoliosis induced by costotransversectomy in minipigs model. Med Glas (Zenica) 16(2):184–190

    Google Scholar 

  100. Wijdicks SPJ, Lemans JVC, Overweg G et al (2021) Induction of a representative idiopathic-like scoliosis in a porcine model using a multidirectional dynamic spring-based system. Spine J 21(8):1376–1386

    Article  PubMed  Google Scholar 

  101. Machida M, Murai I, Miyashita Y et al (1999) Pathogenesis of idiopathic scoliosis. Experimental study in rats. Spine (Phila Pa 1976) 24(19):1985–1989

    Article  CAS  Google Scholar 

  102. Castelein RM, van Dieen JH, Smit TH (2005) The role of dorsal shear forces in the pathogenesis of adolescent idiopathic scoliosis—a hypothesis. Med Hypotheses 65(3):501–508

    Article  PubMed  Google Scholar 

  103. Xiao J, Wu ZH, Qiu GX et al (2007) Upright posture impact on spine susceptibility in scoliosis and progression patterns of scoliotic curve. Zhonghua Yi Xue Za Zhi 87(1):48–52

    PubMed  Google Scholar 

  104. Liu H, Liu Z, Man CW et al (2019) The effect of exogenous melatonin on reducing scoliotic curvature and improving bone quality in melatonin-deficient C57BL/6J mice. Sci Rep 9(1):6202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Machida M, Saito M, Dubousset J et al (2005) Pathological mechanism of idiopathic scoliosis: experimental scoliosis in pinealectomized rats. Eur Spine J 14(9):843–848

    Article  PubMed  Google Scholar 

  106. Sobajima S, Kin A, Baba I et al (2003) Implication for melatonin and its receptor in the spinal deformities of hereditary lordoscoliotic rabbits. Spine (Phila Pa 1976) 28(6):554–558

    Google Scholar 

  107. de Reuver S, Ijsseldijk LL, Homans JF et al (2021) What a stranded whale with scoliosis can teach us about human idiopathic scoliosis. Sci Rep 11(1):7218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755

    Article  CAS  PubMed  Google Scholar 

  109. Settle SH Jr, Rountree RB, Sinha A et al (2003) Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev Biol 254(1):116–130

    Article  CAS  PubMed  Google Scholar 

  110. Kulkarni S, Nagarajan P, Wall J et al (2008) Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis. Am J Med Genet A 146A(9):1117–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Gao C, Chen BP, Sullivan MB et al (2015) Micro CT analysis of spine architecture in a mouse model of scoliosis. Front Endocrinol (Lausanne) 6:38

    Article  Google Scholar 

  112. Cheng JC, Qin L, Cheung CS et al (2000) Generalized low areal and volumetric bone mineral density in adolescent idiopathic scoliosis. J Bone Miner Res 15(8):1587–1595

    Article  CAS  PubMed  Google Scholar 

  113. Guo X, Chau WW, Chan YL et al (2003) Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J Bone Jt Surg Br 85(7):1026–1031

    Article  CAS  Google Scholar 

  114. Zhu F, Qiu Y, Yeung HY et al (2006) Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis. Pediatr Int 48(6):591–598

    Article  PubMed  Google Scholar 

  115. Cheung CS, Lee WT, Tse YK et al (2006) Generalized osteopenia in adolescent idiopathic scoliosis—association with abnormal pubertal growth, bone turnover, and calcium intake? Spine (Phila Pa 1976) 31(3):330–338

    Article  Google Scholar 

  116. Wang WW, Man GC, Wong JH et al (2014) Abnormal response of the proliferation and differentiation of growth plate chondrocytes to melatonin in adolescent idiopathic scoliosis. Int J Mol Sci 15(9):17100–17114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Miura K, Namba N, Fujiwara M et al (2012) An overgrowth disorder associated with excessive production of cGMP due to a gain-of-function mutation of the natriuretic peptide receptor 2 gene. PLoS ONE 7(8):e42180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim HK, Aruwajoye O, Sucato D et al (2013) Induction of SHP2 deficiency in chondrocytes causes severe scoliosis and kyphosis in mice. Spine (Phila Pa 1976) 38(21):E1307–E1312

    Article  Google Scholar 

  119. Henry SP, Liang S, Akdemir KC et al (2012) The postnatal role of Sox9 in cartilage. J Bone Miner Res 27(12):2511–2525

    Article  CAS  PubMed  Google Scholar 

  120. Karner CM, Long F, Solnica-Krezel L et al (2015) Gpr126/Adgrg6 deletion in cartilage models idiopathic scoliosis and pectus excavatum in mice. Hum Mol Genet 24(15):4365–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu Z, Ramachandran J, Vokes SA et al (2019) Regulation of terminal hypertrophic chondrocyte differentiation in Prmt5 mutant mice modeling infantile idiopathic scoliosis. Dis Model Mech 12(12):041251

    Article  CAS  Google Scholar 

  122. Assaraf E, Blecher R, Heinemann-Yerushalmi L et al (2020) Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat Commun 11(1):3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gorman KF, Christians JK, Parent J et al (2011) A major QTL controls susceptibility to spinal curvature in the curveback guppy. BMC Genet 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  124. Patten SA, Margaritte-Jeannin P, Bernard JC et al (2015) Functional variants of POC5 identified in patients with idiopathic scoliosis. J Clin Investig 125(3):1124–1128

    Article  PubMed  PubMed Central  Google Scholar 

  125. Guo L, Yamashita H, Kou I et al (2016) Functional investigation of a non-coding variant associated with adolescent idiopathic scoliosis in zebrafish: elevated expression of the ladybird homeobox gene causes body axis deformation. PLoS Genet 12(1):e1005802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Hayes M, Naito M, Daulat A et al (2013) Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/beta-catenin-dependent cell fate decisions during vertebrate development. Development 140(8):1807–1818

    Article  CAS  PubMed  Google Scholar 

  127. Catanzariti J-F, D’hulster-Hocquet L, Le Berre M, Delaplace C, Boukelifa M, Thevenon A (2017) Adolescent idiopathic scoliosis (AIS), cerebrospinal fluid (CSF) flow and ciliopathy. Ann Phys Rehabil Med. https://doi.org/10.1016/j.rehab.2017.07.221

    Article  Google Scholar 

  128. Buchan JG, Gray RS, Gansner JM et al (2014) Kinesin family member 6 (kif6) is necessary for spine development in zebrafish. Dev Dyn 243(12):1646–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Konjikusic MJ, Yeetong P, Boswell CW et al (2018) Mutations in Kinesin family member 6 reveal specific role in ependymal cell ciliogenesis and human neurological development. PLoS Genet 14(11):e1007817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Van Gennip JLM, Boswell CW, Ciruna B (2018) Neuroinflammatory signals drive spinal curve formation in zebrafish models of idiopathic scoliosis. Sci Adv 4(12):eaav781

    Google Scholar 

  131. Rose CD, Pompili D, Henke K et al (2020) SCO-spondin defects and neuroinflammation are conserved mechanisms driving spinal deformity across genetic models of idiopathic scoliosis. Curr Biol 30(12):2363-2373.e6

    Article  CAS  PubMed  Google Scholar 

  132. Troutwine BR, Gontarz P, Konjikusic MJ et al (2020) The Reissner fiber is highly dynamic in vivo and controls morphogenesis of the spine. Curr Biol 30(12):2353-2362.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rodriguez EM, Oksche A, Hein S et al (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237(3):427–441

    CAS  PubMed  Google Scholar 

  134. Galarza M (2002) Evidence of the subcommissural organ in humans and its association with hydrocephalus. Neurosurg Rev 25(4):205–215

    Article  PubMed  Google Scholar 

  135. Orts-Del’Immagine A, Cantaut-Belarif Y, Thouvenin O et al (2020) Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo. Curr Biol 30(5):827–839

    Article  CAS  PubMed  Google Scholar 

  136. Terhune EA, Cuevas MT, Monley AM et al (2020) Mutations in KIF7 implicated in idiopathic scoliosis in humans and axial curvatures in zebrafish. Hum Mutat 42(4):392–407

    Article  CAS  Google Scholar 

  137. Burwell RG (2003) Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil 6(3–4):137–170

    Article  CAS  PubMed  Google Scholar 

  138. Latalski M, Danielewicz-Bromberek A, Fatyga M et al (2017) Current insights into the aetiology of adolescent idiopathic scoliosis. Arch Orthop Trauma Surg 137(10):1327–1333

    Article  PubMed  PubMed Central  Google Scholar 

  139. Burwell RG, Aujla RK, Grevitt MP et al (2009) Pathogenesis of adolescent idiopathic scoliosis in girls—a double neuro-osseous theory involving disharmony between two nervous systems, somatic and autonomic expressed in the spine and trunk: possible dependency on sympathetic nervous system and hormones with implications for medical therapy. Scoliosis 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lowe TG, Edgar M, Margulies JY et al (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Jt Surg Am 82-A(8):1157–1168

    Article  Google Scholar 

  141. Raggio CL (2006) Sexual dimorphism in adolescent idiopathic scoliosis. Orthop Clin N Am 37(4):555–558

    Article  Google Scholar 

  142. Grauers A, Einarsdottir E, Gerdhem P (2016) Genetics and pathogenesis of idiopathic scoliosis. Scoliosis Spinal Disord 11:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Peng Y, Wang SR, Qiu GX et al (2020) Research progress on the etiology and pathogenesis of adolescent idiopathic scoliosis. Chin Med J (Engl) 133(4):483–493

    Article  Google Scholar 

  144. Liu Z et al (2021) An adhesion G protein-coupled receptor is required in cartilaginous and dense connective tissues to maintain spine alignment. Elife 10:e67781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Irie K et al (2016) Histopathology of a wavy medaka. J Toxicol Pathol 29(2):115–118

    Article  PubMed  PubMed Central  Google Scholar 

  146. Gao W et al (2017) Rare coding variants in MAPK7 predispose to adolescent idiopathic scoliosis. Hum Mutat 38(11):1500–1510

    Article  CAS  PubMed  Google Scholar 

  147. Mathieu H et al (2021) Genetic variant of TTLL11 gene and subsequent ciliary defects are associated with idiopathic scoliosis in a 5-generation UK family. Sci Rep 11(1):11026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Marie-Hardy L et al (2021) The orthopedic characterization of cfap298(tm304) mutants validate zebrafish to faithfully model human AIS. Sci Rep 11(1):7392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this manuscript. No funding was received for conducting this study. No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

ET: data collection, writing—original draft preparation, writing—review and editing, approval of final version of manuscript, agree to be accountable for the work. AM: data collection, writing—original draft preparation, writing—review and editing, approval of final version of manuscript, agree to be accountable for the work. MC: data collection, writing—original draft preparation, writing—review and editing, approval of final version of manuscript, agree to be accountable for the work content. CW: data collection, writing—original draft preparation, writing—review and editing, approval of final version of manuscript, agree to be accountable for the work content. RG: data collection, writing—review and editing, approval of final version of manuscript, agree to be accountable for the work. NH-M: writing—review and editing, supervision, approval of final version of manuscript, agree to be accountable for the work.

Corresponding author

Correspondence to Nancy Hadley-Miller.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Ethics approval

This is a narrative review; no ethics approval was required.

Consent

This is a narrative review; no consenting was performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terhune, E.A., Monley, A.M., Cuevas, M.T. et al. Genetic animal modeling for idiopathic scoliosis research: history and considerations. Spine Deform 10, 1003–1016 (2022). https://doi.org/10.1007/s43390-022-00488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-022-00488-7

Keywords

Navigation