Skip to main content

Blood loss estimation during posterior spinal fusion for adolescent idiopathic scoliosis

Abstract

Purpose

Blood loss (BL) during posterior spinal fusion for adolescent idiopathic scoliosis (AIS) may be estimated using a variety of unproven techniques. Patient care and research on BL are likely impacted by a lack of standardization. A novel FDA-approved blood volume (BV) analysis system (BVA-100 Blood Volume Analyzer) allows rapid processing with > 97% accuracy. The purpose of this study was to investigate common methods for BL estimation.

Methods

BV assessment was performed with the BVA-100. After obtaining a baseline sample of 5 mL of blood, 1 mL of I-131-labeled albumin was injected intravenously over 1 min. Five milliliter blood samples were then collected at 12, 18, 24, 30, and 36 min post-injection. Intravenous fluid was minimized to maintain euvolemia. Salvaged blood was not administered during surgery. BL was estimated using several common techniques and compared to the BV measurements provided by the BVA-100 (BVABL).

Results

Thirty AIS patients were prospectively enrolled with major curves of 54° and underwent fusions of 10 levels. BL based on the BVA-100 (BVABL) was 519.2 [IQR 322.9, 886.2] mL. Previously published formulas all failed to approximate BVABL. Multiplying the cell saver volume return by 3 (CS3) approximates BVABL well with a Spearman correlation coefficient and ICC of 0.80 and 0.72, respectively. An extrapolated cell salvage-based estimator also showed high intraclass correlation coefficient (ICC) and Spearman coefficients with less bias than CS3.

Conclusion

Published formulaic approaches do not approximate true blood loss. Multiplying the cell saver volume by 3 or using the cell salvage-based estimator had the highest correlation coefficient and ICC.

Level of evidence

Prospective cohort Level 2.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

Deidentified data available on request.

Code availability

Not applicable.

References

  1. 1.

    Bourke DL, Smith TC (1974) Estimating allowable hemodilution. Anesthesiology 41(6):609–612. https://doi.org/10.1097/00000542-197412000-00015

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Brecher ME, Monk T, Goodnough LT (1997) A standardized method for calculating blood loss. Transfusion 37(10):1070–1074. https://doi.org/10.1046/j.1537-2995.1997.371098016448.x

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Camarasa MA, Olle G, Serra-Prat M et al (2006) Effectiveness of a preoperative autologous blood donation program in total knee replacement. Med Clin (Barc) 127(15):572–573. https://doi.org/10.1157/13094000

    Article  Google Scholar 

  4. 4.

    Gross JB (1983) Estimating allowable blood loss: corrected for dilution. Anesthesiology 58(3):277–280. https://doi.org/10.1097/00000542-198303000-00016

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Waters JH, Lee JS, Karafa MT (2004) A mathematical model of cell salvage compared and combined with normovolemic hemodilution. Transfusion 44(10):1412–1416. https://doi.org/10.1111/j.1537-2995.2004.04050.x

    Article  PubMed  Google Scholar 

  6. 6.

    Stahl DL, Groeben H, Kroepfl D et al (2012) Development and validation of a novel tool to estimate peri-operative blood loss. Anaesthesia 67(5):479–486. https://doi.org/10.1111/j.1365-2044.2011.06916.x

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Lemee J, Scalabre A, Chauleur C et al (2020) Visual estimation of postpartum blood loss during a simulation training: a prospective study. J Gynecol Obstet Hum Reprod 49(4):101673. https://doi.org/10.1016/j.jogoh.2019.101673

    Article  PubMed  Google Scholar 

  8. 8.

    Rothermel LD, Lipman JM (2016) Estimation of blood loss is inaccurate and unreliable. Surgery 160(4):946–953. https://doi.org/10.1016/j.surg.2016.06.006

    Article  PubMed  Google Scholar 

  9. 9.

    Jesus LE, Ramos BA, Rangel M et al (2015) Blood loss assessment in pediatric surgery: visual versus gravimetric methods: an experimental study. Paediatr Anaesth 25(6):645–646. https://doi.org/10.1111/pan.12602

    Article  PubMed  Google Scholar 

  10. 10.

    Chua S, Ho LM, Vanaja K et al (1998) Validation of a laboratory method of measuring postpartum blood loss. Gynecol Obstet Invest 46(1):31–33. https://doi.org/10.1159/000009992

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Diaz V, Abalos E, Carroli G (2018) Methods for blood loss estimation after vaginal birth. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010980.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lopez-Picado A, Albinarrate A, Barrachina B (2017) Determination of perioperative blood loss: accuracy or approximation? Anesth Analg 125(1):280–286. https://doi.org/10.1213/ANE.0000000000001992

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sharareh B, Woolwine S, Satish S et al (2015) Real time intraoperative monitoring of blood loss with a novel tablet application. Open Orthop J 9:422–426. https://doi.org/10.2174/1874325001509010422

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Yang B, Yang O, Guzman J et al (2015) Intraoperative, real-time monitoring of blood flow dynamics associated with laser surgery of port wine stain birthmarks. Lasers Surg Med 47(6):469–475. https://doi.org/10.1002/lsm.22369

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Nowicki PD, Ndika A, Kemppainen J et al (2018) Measurement of intraoperative blood loss in pediatric orthopaedic patients: evaluation of a new method. J Am Acad Orthop Surg Glob Res Rev 2(5):e014. https://doi.org/10.5435/JAAOSGlobal-D-18-00014

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Manzone TA, Dam HQ, Soltis D et al (2007) Blood volume analysis: a new technique and new clinical interest reinvigorate a classic study. J Nucl Med Technol 35(2):55–63. https://doi.org/10.2967/jnmt.106.035972

    Article  PubMed  Google Scholar 

  17. 17.

    Fouad-Tarazi F, Calcatti J, Christian R et al (2007) Blood volume measurement as a tool in diagnosing syncope. Am J Med Sci 334(1):53–56. https://doi.org/10.1097/MAJ.0b013e318063c6f7

    Article  PubMed  Google Scholar 

  18. 18.

    Yu M, Pei K, Moran S et al (2011) A prospective randomized trial using blood volume analysis in addition to pulmonary artery catheter, compared with pulmonary artery catheter alone, to guide shock resuscitation in critically ill surgical patients. Shock 35(3):220–228. https://doi.org/10.1097/SHK.0b013e3181fc9178

    Article  PubMed  Google Scholar 

  19. 19.

    Nelson M, Green J, Spiess B et al (2018) Measurement of blood loss in cardiac surgery: still too much. Ann Thorac Surg 105(4):1176–1181. https://doi.org/10.1016/j.athoracsur.2017.11.023

    Article  PubMed  Google Scholar 

  20. 20

    Waters JH, Lee JS, Karafa MT (2002) A mathematical model of cell salvage efficiency. Anesth Analg 95(5):1312–1317. https://doi.org/10.1097/00000539-200211000-00040

    Article  PubMed  Google Scholar 

  21. 21.

    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160. https://doi.org/10.1177/096228029900800204

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Dworkin HJ, Premo M, Dees S (2007) Comparison of red cell and whole blood volume as performed using both chromium-51-tagged red cells and iodine-125-tagged albumin and using I-131-tagged albumin and extrapolated red cell volume. Am J Med Sci 334(1):37–40. https://doi.org/10.1097/MAJ.0b013e3180986276

    Article  PubMed  Google Scholar 

  23. 23.

    Guay J, Haig M, Lortie L et al (1994) Predicting blood loss in surgery for idiopathic scoliosis. Can J Anaesth 41(9):775–781. https://doi.org/10.1007/BF03011583

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Verma K, Errico T, Diefenbach C et al (2014) The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis: a prospective randomized trial. J Bone Joint Surg Am 96(10):e80. https://doi.org/10.2106/JBJS.L.00008

    Article  PubMed  Google Scholar 

  25. 25.

    Verma K, Lonner B, Dean L et al (2013) Reduction of mean arterial pressure at incision reduces operative blood loss in adolescent idiopathic scoliosis. Spine Deform 1(2):115–122. https://doi.org/10.1016/j.jspd.2013.01.001

    Article  PubMed  Google Scholar 

  26. 26.

    Cahill PJ, Samdani AF, Brusalis CM et al (2018) Youth and experience: the effect of surgeon experience on outcomes in cerebral palsy scoliosis surgery. Spine Deform 6(1):54–59. https://doi.org/10.1016/j.jspd.2017.05.007

    Article  PubMed  Google Scholar 

  27. 27.

    Gornitzky AL, Flynn JM, Muhly WT et al (2016) A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform 4(4):288–295. https://doi.org/10.1016/j.jspd.2016.01.001

    Article  Google Scholar 

  28. 28

    Muhly WT, Sankar WN, Ryan K et al (2016) Rapid recovery pathway after spinal fusion for idiopathic scoliosis. Pediatrics. https://doi.org/10.1542/peds.2015-1568

    Article  PubMed  Google Scholar 

  29. 29.

    Fletcher ND, Andras LM, Lazarus DE et al (2017) Use of a novel pathway for early discharge was associated with a 48% shorter length of stay after posterior spinal fusion for adolescent idiopathic scoliosis. J Pediatr Orthop 37(2):92–97. https://doi.org/10.1097/BPO.0000000000000601

    Article  PubMed  Google Scholar 

  30. 30.

    Fletcher ND, Murphy JS, Austin TM et al (2021) Short term outcomes of an enhanced recovery after surgery (ERAS) pathway versus a traditional discharge pathway after posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform. https://doi.org/10.1007/s43390-020-00282-3

    Article  PubMed  Google Scholar 

  31. 31.

    Fletcher ND, Shourbaji N, Mitchell PM et al (2014) Clinical and economic implications of early discharge following posterior spinal fusion for adolescent idiopathic scoliosis. J Child Orthop 8(3):257–263. https://doi.org/10.1007/s11832-014-0587-y

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sanders AE, Andras LM, Sousa T et al (2017) Accelerated discharge protocol for posterior spinal fusion patients with adolescent idiopathic scoliosis decreases hospital postoperative charges 22. Spine (Phila Pa 1976) 42(2):92–97. https://doi.org/10.1097/BRS.0000000000001666

    Article  Google Scholar 

  33. 33.

    Yang J, Skaggs DL, Chan P et al (2020) High satisfaction in adolescent idiopathic scoliosis patients on enhanced discharge pathway. J Pediatr Orthop 40(3):e166–e170. https://doi.org/10.1097/BPO.0000000000001436

    Article  PubMed  Google Scholar 

  34. 34.

    Jones JG, Wardrop CA (2000) Measurement of blood volume in surgical and intensive care practice. Br J Anaesth 84(2):226–235. https://doi.org/10.1093/oxfordjournals.bja.a013407

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Guinn NR, Broomer BW, White W et al (2013) Comparison of visually estimated blood loss with direct hemoglobin measurement in multilevel spine surgery. Transfusion 53(11):2790–2794. https://doi.org/10.1111/trf.12119

    Article  PubMed  Google Scholar 

  36. 36

    Sehat KR, Evans RL, Newman JH (2004) Hidden blood loss following hip and knee arthroplasty. Correct management of blood loss should take hidden loss into account. J Bone Joint Surg Br 86(4):561–565

    CAS  Article  Google Scholar 

  37. 37.

    International Committee for Standardization in Haematology (1980) Recommended methods for measurement of red-cell and plasma volume. J Nucl Med 21(8):793–800

    Google Scholar 

  38. 38.

    Fodor GH, Habre W, Balogh AL et al (2019) Optimal crystalloid volume ratio for blood replacement for maintaining hemodynamic stability and lung function: an experimental randomized controlled study. BMC Anesthesiol 19(1):21. https://doi.org/10.1186/s12871-019-0691-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Seo EH, Park HJ, Piao LY et al (2020) Immune response in fluid therapy with crystalloids of different ratios or colloid for rats in haemorrhagic shock. Sci Rep 10(1):8067. https://doi.org/10.1038/s41598-020-65063-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Spahn DR, Bouillon B, Cerny V et al (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care 17(2):R76. https://doi.org/10.1186/cc12685

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Spahn DR, Bouillon B, Cerny V et al (2019) The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 23(1):98. https://doi.org/10.1186/s13054-019-2347-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Rossaint R, Bouillon B, Cerny V et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20:100. https://doi.org/10.1186/s13054-016-1265-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding was provided through the Harrison Foundation.

Author information

Affiliations

Authors

Contributions

Data Collection: NF, LG, RB, HL, ML, TA. Writing—original draft preparation: NF, LG, TA. Approved final draft: NF, LG, RB, HL, ML, TA. Agrees to be accountable for work: NF, LG, RB, HL, ML, TA.

Corresponding author

Correspondence to Nicholas D. Fletcher.

Ethics declarations

Conflict of interest

Nicholas Fletcher: Reports consulting fees from Orthopaediatrics, Nuvasive, and Medtronic; speakers fees from Orthopaediatrics, Nuvasive, and Zimmer Biomet; Grant Support from the Harrison Foundation and POSNA; Board Membership with the Children’s Healthcare of Atlanta. Laura Gilbertson: Declares no conflicts of interest. Robert Bruce: Declares no conflicts of interest. Humphrey Lam: Declares no conflicts of interest. Matthew Lewis: Declares no conflicts of interest. Thomas Austin: Declares no conflicts of interest.

Ethics approval

This study received full approval from the institutional review board (IRB) including review by the IRB ethics committee.

Consent to participate

All patients provided assent and parents provided consent for treatment.

Consent to publication

Publication was implicit in consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fletcher, N.D., Gilbertson, L.E., Bruce, R.W. et al. Blood loss estimation during posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform (2021). https://doi.org/10.1007/s43390-021-00440-1

Download citation

Keywords

  • Adolescent idiopathic scoliosis
  • Blood loss estimation
  • Cell saver
  • Cell salvage
  • Blood volume analyzer