Ponte osteotomies in a matched series of large AIS curves increase surgical risk without improving outcomes

Abstract

Purpose

The routine use of Ponte osteotomies in adolescent idiopathic scoliosis (AIS) surgery is controversial with conflicting data for coronal plane correction and little analysis in the sagittal plane. The objective of this study was to analyze the efficacy of Ponte osteotomies in large curve AIS.

Methods

A single institution, prospectively-collected series of consecutive AIS patients who had Ponte osteotomies (P cohort) was directly matched to patients with no Pontes (NP cohort) by age, gender, Lenke classification, surgeon, coronal, and sagittal Cobb angles. The radiographic review included adjusted values using a 3D-derived published formula for preoperative T5-T12 kyphosis. Patient-reported outcomes (PROs) were assessed with the SRS-30 and Spinal Appearance Questionnaire (SAQ).

Results

There were 68 patients (34/cohort) with minimum 2-year follow-up with no differences between P and NP cohorts in age, preoperative coronal Cobb (74.5° vs 70.8°), flexibility index, measured or 3D-adjusted T5-T12 kyphosis. Rod material/diameter, fusion levels, blood loss, and operative time did not differ, but implant density was higher in the P group (1.53 vs 1.31, p < 0.001). The P group had 7.9% greater coronal Cobb correction (66.6% vs 58.7%, p < 0.003) without difference in final Cobb angles (24.7° vs. 29.1°, p = 0.052). There were no differences in measured or adjusted T5-T12 kyphosis in the sagittal plane. The P group had a 15% rate of critical intraoperative neuromonitoring changes versus 0% in the NP group (p = 0.053). At follow-up, there were no differences in scoliometer measurements or any domain of SRS-30 or SAQ scores.

Conclusion

In this first reported matched series of AIS patients, Ponte osteotomies provide small radiographic gains in the coronal plane with no improvement in the sagittal plane and no change in truncal rotation. There was a higher risk of critical intraoperative neuromonitoring changes, and no benefits in patient-reported outcomes. This calls into question the routine use of Ponte osteotomies in AIS, even for curves averaging 70 degrees.

Level of evidence

II.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Smith-Petersen MN, Larson CB, Aufranc OE (1969) Osteotomy of the spine for correction of flexion deformity in rheumatoid arthritis. Clin Orthop Relat Res 66:6–9

    CAS  PubMed  Google Scholar 

  2. 2.

    Ponte A (1985) Surgical treatment of Scheuermann’s hyperkyphosis. Orthop Trans 9:127

    Google Scholar 

  3. 3.

    Ponte A (2003) Posterior column shortening for Scheuermann’s kyphosis. An innovative one-stage technique. J Spinal Disord Tech. 20:586–593

    Google Scholar 

  4. 4.

    Ponte A, Orlando G, Siccardi GL (2018) The true ponte osteotomy: by the one who developed it. Spine Deformity 6(1):2–11. https://doi.org/10.1016/j.jspd.2017.06.006

    Article  PubMed  Google Scholar 

  5. 5.

    Geck MJ, Macagno A, Ponte A, Shufflebarger HL (2007) The Ponte procedure: posterior only treatment of Scheuermann’s kyphosis using segmental posterior shortening and pedicle screw instrumentation. J Spinal Disord Tech 20(8):586–593. https://doi.org/10.1097/BSD.0b013e31803d3b16

    Article  PubMed  Google Scholar 

  6. 6.

    McClendon J Jr, O’Shaughnessy BA, Sugrue PA, Neal CJ, Acosta FL Jr, Koski TR, Ondra SL (2012) Techniques for operative correction of proximal junctional kyphosis of the upper thoracic spine. Spine 37(4):292–303. https://doi.org/10.1097/BRS.0b013e318222dc8a

    Article  PubMed  Google Scholar 

  7. 7.

    Grevitt M, Kamath V, Avadhani A, Rajasekaran S (2010) Correction of thoracic kyphosis with Ponte osteotomy. Eur Spine J 19(2):351–352. https://doi.org/10.1007/s00586-010-1311-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    La Maida GA, Misaggi B (2012) Posterior only treatment of adult thoracic kyphosis with multiple Ponte osteotomies and pedicle screw instrumentation. Eur Spine J 21(9):1891–1895. https://doi.org/10.1007/s00586-012-2472-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Cho KJ, Bridwell KH, Lenke LG, Berra A, Baldus C (2005) Comparison of Smith-Petersen versus pedicle subtraction osteotomy for the correction of fixed sagittal imbalance. Spine 30(18):2030–2037. https://doi.org/10.1097/01.brs.0000179085.92998.ee (Discussion 2038)

    Article  PubMed  Google Scholar 

  10. 10.

    Gill JB, Levin A, Burd T, Longley M (2008) Corrective osteotomies in spine surgery. J Bone Joint Surg Am 90(11):2509–2520. https://doi.org/10.2106/JBJS.H.00081

    Article  PubMed  Google Scholar 

  11. 11.

    Shufflebarger HL, Clark CE (1998) Effect of wide posterior release on correction in adolescent idiopathic scoliosis. J Pediatr Orthop B 7(2):117–123. https://doi.org/10.1097/01202412-199804000-00005

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Shufflebarger HL, Geck MJ, Clark CE (2004) The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis: posterior shortening and pedicle screws. Spine 29(3):269–276. https://doi.org/10.1097/01.brs.0000109881.63411.48 (Discussion 276)

    Article  PubMed  Google Scholar 

  13. 13.

    Pizones J, Izquierdo E, Sanchez-Mariscal F, Alvarez P, Zuniga L, Gomez A (2010) Does wide posterior multiple level release improve the correction of adolescent idiopathic scoliosis curves? J Spinal Disord Tech 23(7):e24-30. https://doi.org/10.1097/BSD.0b013e3181c29d16

    Article  PubMed  Google Scholar 

  14. 14.

    Shah SA, Dhawale AA, Oda JE, Yorgova P, Neiss GI, Holmes L Jr, Gabos PG (2013) Ponte osteotomies with pedicle screw instrumentation in the treatment of adolescent idiopathic scoliosis. Spine deformity 1(3):196–204. https://doi.org/10.1016/j.jspd.2013.03.002

    Article  PubMed  Google Scholar 

  15. 15.

    Samdani AF, Bennett JT, Singla AR, Marks MC, Pahys JM, Lonner BS, Miyanji F, Shah SA, Shufflebarger HL, Newton PO, Asghar J, Betz RR, Cahill PJ (2015) Do Ponte osteotomies enhance correction in adolescent idiopathic scoliosis? An analysis of 191 Lenke 1A and 1B Curves. Spine Deform 3(5):483–488. https://doi.org/10.1016/j.jspd.2015.03.002

    Article  PubMed  Google Scholar 

  16. 16.

    Halanski MA, Cassidy JA (2013) Do multilevel Ponte osteotomies in thoracic idiopathic scoliosis surgery improve curve correction and restore thoracic kyphosis? J Spinal Disord Tech 26(5):252–255. https://doi.org/10.1097/BSD.0b013e318241e3cf

    Article  PubMed  Google Scholar 

  17. 17.

    Holewijn RM, Schlosser TP, Bisschop A, van der Veen AJ, Stadhouder A, van Royen BJ, Castelein RM, de Kleuver M (2015) How does spinal release and Ponte osteotomy improve spinal flexibility? The law of diminishing returns. Spine Deform 3(5):489–495. https://doi.org/10.1016/j.jspd.2015.03.006

    Article  PubMed  Google Scholar 

  18. 18.

    Parvaresh KC, Osborn EJ, Reighard FG, Doan J, Bastrom TP, Newton PO (2017) Predicting 3D thoracic kyphosis using traditional 2D radiographic measurements in adolescent idiopathic scoliosis. Spine Deform 5(3):159–165. https://doi.org/10.1016/j.jspd.2016.12.002

    Article  PubMed  Google Scholar 

  19. 19.

    Wiemann J, Durrani S, Bosch P (2011) The effect of posterior spinal releases on axial correction torque: a cadaver study. J Child Orthop 5(2):109–113. https://doi.org/10.1007/s11832-011-0327-5

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sangiorgio SN, Borkowski SL, Bowen RE, Scaduto AA, Frost NL, Ebramzadeh E (2013) Quantification of increase in three-dimensional spine flexibility following sequential ponte osteotomies in a cadaveric model. Spine Deform 1(3):171–178. https://doi.org/10.1016/j.jspd.2013.01.006

    Article  PubMed  Google Scholar 

  21. 21.

    Wang C, Bell K, McClincy M, Jacobs L, Dede O, Roach J, Bosch P (2015) Biomechanical comparison of Ponte osteotomy and discectomy. Spine 40(3):E141-145. https://doi.org/10.1097/BRS.0000000000000697

    Article  PubMed  Google Scholar 

  22. 22.

    Reames DL, Smith JS, Fu KM, Polly DW Jr, Ames CP, Berven SH, Perra JH, Glassman SD, McCarthy RE, Knapp RD Jr, Heary R, Shaffrey CI, Scoliosis Research Society M, Mortality C (2011) Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine 36(18):1484–1491. https://doi.org/10.1097/BRS.0b013e3181f3a326

    Article  PubMed  Google Scholar 

  23. 23.

    Jankowski PP, Yaszay B, Cidambi KR, Bartley CE, Bastrom TP, Newton PO (2018) The relationship between apical vertebral rotation and truncal rotation in adolescent idiopathic scoliosis using 3D reconstructions. Spine Deform 6(3):213–219. https://doi.org/10.1016/j.jspd.2017.10.003

    Article  PubMed  Google Scholar 

Download references

Funding

This was an IRB-approved study. Funded by Texas Scottish Rite Hospital for Children Research Department.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Sucato.

Ethics declarations

Conflict of interest

LF (none), KP (none), DG (none), DS (Globus, Royalties, outside of submitted work).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Floccari, L.V., Poppino, K., Greenhill, D.A. et al. Ponte osteotomies in a matched series of large AIS curves increase surgical risk without improving outcomes. Spine Deform (2021). https://doi.org/10.1007/s43390-021-00339-x

Download citation

Keywords

  • Adolescent idiopathic scoliosis
  • AIS
  • Ponte
  • Osteotomy
  • Posterior spinal fusion