Predictors of spontaneous lumbar curve correction in thoracic-only fusions: 3D analysis in AIS

Abstract

Purpose

To evaluate how 3D parameters of the instrumented thoracic spine relate to the uninstrumented lumbar spine following thoracic-only fusion (TOF) for adolescent idiopathic scoliosis (AIS) and determine the factors predictive of lumbar correction.

Methods

A multi-center retrospective review was conducted of AIS patients with Lenke 1–4 B or C curves undergoing fusion of their thoracic spine only with minimum 2-year follow-up and 3D spine reconstructions from biplanar radiography. Pre-operative to 2-year post-operative differences were evaluated. Pearson’s correlations were used to identify 3D coronal, sagittal and axial relationships at 2 years post-operative. Multivariate linear regression was used to identify variables most predictive of lumbar curve correction.

Results

Eighty-four AIS patients met inclusion (54 B modifiers, 30 C modifiers). Average pre-operative thoracic and lumbar curves were 54 ± 9° and 41 ± 7° and corrected to 19 ± 7° and 21 ± 7°, respectively. 3D T5-T12 thoracic kyphosis increased from 6 ± 13° to 26 ± 8°. Thoracic and lumbar apical rotation decreased from − 14 ± 6° to -5 ± 6° and 13 ± 5° to 11 ± 6°, respectively. Thoracic curve correction correlated with lumbar curve correction (r = 0.67, p = 0.001) and decreased LIV tilt correlated with smaller residual lumbar curve magnitude (r = 0.63, p < 0.001). Increasing 3D kyphosis of the instrumented segment correlated with increased percentage lumbar curve correction (r = 0.29, p = 0.009). Multivariate linear regression showed LIV tilt and thoracic curve magnitude as the most predictive variables of post-operative residual lumbar curve magnitude, and percent correction of the thoracic curve and change in 3D instrumented kyphosis as most predictive of percent correction of the lumbar curve.

Conclusions

Analysis of 3D data highlights several considerations for AIS patients undergoing TOF. Maximizing thoracic curve correction, leveling the LIV, and to a lesser extent, restoring kyphosis in the instrumented segment are the factors most likely to result in greater correction of the instrumented lumbar curve following thoracic-only fusions in Lenke 1–4 B and C curves.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Cochran T, Irstam L, Nachemson A (1983) Long-term anatomic and functional changes in patients with adolescent idiopathic scoliosis treated by Harrington rod fusion. Spine (Phila Pa 1976) 8(6):576–584

    CAS  Article  Google Scholar 

  2. 2.

    Fabry G, Van Melkebeek J, Bockx E (1989) Back pain after Harrington rod instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976) 14(6):620–624

    CAS  Article  Google Scholar 

  3. 3.

    Wilk B, Karol LA, Johnston CE 2nd, Colby S, Haideri N (2006) The effect of scoliosis fusion on spinal motion: a comparison of fused and nonfused patients with idiopathic scoliosis. Spine (Phila Pa 1976) 31(3):309–314. https://doi.org/10.1097/01.brs.0000197168.11815.ec

    Article  Google Scholar 

  4. 4.

    Richards BS, Birch JG, Herring JA, Johnston CE, Roach JW (1989) Frontal plane and sagittal plane balance following Cotrel–Dubousset instrumentation for idiopathic scoliosis. Spine (Phila Pa 1976) 14(7):733–737

    CAS  Article  Google Scholar 

  5. 5.

    Thompson JP, Transfeldt EE, Bradford DS, Ogilvie JW, Boachie-Adjei O (1990) Decompensation after Cotrel–Dubousset instrumentation of idiopathic scoliosis. Spine (Phila Pa 1976) 15(9):927–931

    CAS  Article  Google Scholar 

  6. 6.

    Lenke LG, Edwards CC 2nd, Bridwell KH (2003) The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine (Phila Pa 1976) 28(20):S199-207. https://doi.org/10.1097/01.BRS.0000092216.16155.33

    Article  Google Scholar 

  7. 7.

    Edwards CC 2nd, Lenke LG, Peelle M, Sides B, Rinella A, Bridwell KH (2004) Selective thoracic fusion for adolescent idiopathic scoliosis with C modifier lumbar curves: 2- to 16-year radiographic and clinical results. Spine (Phila Pa 1976) 29(5):536–546

    Article  Google Scholar 

  8. 8.

    Chang KW, Chang KI, Wu CM (2007) Enhanced capacity for spontaneous correction of lumbar curve in the treatment of major thoracic-compensatory C modifier lumbar curve pattern in idiopathic scoliosis. Spine (Phila Pa 1976) 32(26):3020–3029. https://doi.org/10.1097/BRS.0b013e31815cdde3

    Article  Google Scholar 

  9. 9.

    Yong MR, Izatt MT, Adam CJ, Labrom RD, Askin GN (2012) Secondary curve behavior in Lenke type 1C adolescent idiopathic scoliosis after thoracoscopic selective anterior thoracic fusion. Spine (Phila Pa 1976) 37(23):1965–1974. https://doi.org/10.1097/BRS.0b013e3182583421

    Article  Google Scholar 

  10. 10.

    Liljenqvist U, Halm H, Bullmann V (2013) Spontaneous lumbar curve correction in selective anterior instrumentation and fusion of idiopathic thoracic scoliosis of Lenke type C. Eur Spine J 22(Suppl 2):S138-148. https://doi.org/10.1007/s00586-012-2299-7

    Article  PubMed  Google Scholar 

  11. 11.

    Mizusaki D, Gotfryd AO (2016) Assessment of spontaneous correction of lumbar curve after fusion of the main thoracic in Lenke 1 adolescent idiopathic scoliosis. Rev Bras Ortop 51(1):83–89. https://doi.org/10.1016/j.rboe.2015.03.013

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Crawford CH 3rd, Lenke LG, Sucato DJ, Richards BS 3rd, Emans JB, Vitale MG, Erickson MA, Sanders JO (2013) Selective thoracic fusion in Lenke 1C curves: prevalence and criteria. Spine (Phila Pa 1976) 38(16):1380–1385. https://doi.org/10.1097/BRS.0b013e3182987360

    Article  Google Scholar 

  13. 13.

    Newton PO, Faro FD, Lenke LG, Betz RR, Clements DH, Lowe TG, Haher TR, Merola AA, D’Andrea LP, Marks M, Wenger DR (2003) Factors involved in the decision to perform a selective versus nonselective fusion of Lenke 1B and 1C (King-Moe II) curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 28(20):S217-223. https://doi.org/10.1097/01.BRS.0000092461.11181.CD

    Article  Google Scholar 

  14. 14.

    Singla A, Bennett JT, Sponseller PD, Pahys JM, Marks MC, Lonner BS, Newton PO, Miyanji F, Betz RR, Cahill PJ, Samdani AF (2014) Results of selective thoracic versus nonselective fusion in Lenke type 3 curves. Spine (Phila Pa 1976) 39(24):2034–2041. https://doi.org/10.1097/BRS.0000000000000623

    Article  Google Scholar 

  15. 15.

    Patel PN, Upasani VV, Bastrom TP, Marks MC, Pawelek JB, Betz RR, Lenke LG, Newton PO (2008) Spontaneous lumbar curve correction in selective thoracic fusions of idiopathic scoliosis: a comparison of anterior and posterior approaches. Spine (Phila Pa 1976) 33(10):1068–1073. https://doi.org/10.1097/BRS.0b013e31816f6404

    Article  Google Scholar 

  16. 16.

    Lenke LG, Bridwell KH, Baldus C, Blanke K (1992) Preventing decompensation in King type II curves treated with Cotrel–Dubousset instrumentation. Strict guidelines for selective thoracic fusion. Spine (Phila Pa 1976) 17(8 Suppl):S274-281

    CAS  Article  Google Scholar 

  17. 17.

    Chang KW, Leng X, Zhao W, Chen YY, Chen TC, Chang KI (2011) Broader curve criteria for selective thoracic fusion. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e318215fa73

    Article  Google Scholar 

  18. 18.

    Takahashi J, Newton PO, Ugrinow VL, Bastrom TP (2011) Selective thoracic fusion in adolescent idiopathic scoliosis: factors influencing the selection of the optimal lowest instrumented vertebra. Spine (Phila Pa 1976) 36(14):1131–1141. https://doi.org/10.1097/BRS.0b013e3182053d19

    Article  Google Scholar 

  19. 19.

    Skaggs DL, Seehausen DA, Yamaguchi KT Jr, Hah RJ, Wright ML, Bumpass DB, Kim HJ, Andras LM, Vitale MG, Lenke LG (2016) Assessment of lowest instrumented vertebra tilt on radiographic measurements in Lenke “C” modifier curves undergoing selective thoracic fusion in adolescent idiopathic scoliosis. Spine Deform 4(2):125–130. https://doi.org/10.1016/j.jspd.2015.08.006

    Article  PubMed  Google Scholar 

  20. 20.

    Jansen RC, van Rhijn LW, Duinkerke E, van Ooij A (2007) Predictability of the spontaneous lumbar curve correction after selective thoracic fusion in idiopathic scoliosis. Eur Spine J 16(9):1335–1342. https://doi.org/10.1007/s00586-007-0320-3

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    van Rhijn LW, Plasmans CM, Veraart BE (2002) No relationship exists between the correction of the thoracic and the lumbar curves after selective thoracic fusion for adolescent idiopathic scoliosis King type II. Eur Spine J 11(6):550–555. https://doi.org/10.1007/s00586-002-0414-x

    Article  PubMed  Google Scholar 

  22. 22.

    Deschenes S, Charron G, Beaudoin G, Labelle H, Dubois J, Miron MC, Parent S (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X-ray imager. Spine (Phila Pa 1976) 35(9):989–994. https://doi.org/10.1097/BRS.0b013e3181bdcaa4

    Article  Google Scholar 

  23. 23.

    Glaser DA, Doan J, Newton PO (2013) Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography. Spine (Phila Pa 1976) 37(16):1391–1397. https://doi.org/10.1097/BRS.0b013e3182518a15

    Article  Google Scholar 

  24. 24.

    Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 22(2):296–304. https://doi.org/10.1007/s00586-012-2469-7

    Article  PubMed  Google Scholar 

  25. 25.

    Carreau JH, Bastrom T, Petcharaporn M, Schulte C, Marks M, Illés T, Somoskeöy S, Newton PO (2014) Computer-generated, three-dimensional spine model from biplanar radiographs: a validity study in idiopathic scoliosis curves greater than 50 degrees. Spine Deform 2(2):81–88. https://doi.org/10.1016/j.jspd.2013.10.003

    Article  PubMed  Google Scholar 

  26. 26.

    Newton PO, Khandwala Y, Bartley CE, Reighard FG, Bastrom TP, Yaszay B (2016) New EOS imaging protocol allows a substantial reduction in radiation exposure for scoliosis patients. Spine Deform 4(2):138–144. https://doi.org/10.1016/j.jspd.2015.09.002

    Article  PubMed  Google Scholar 

  27. 27.

    Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Jt Surg Am 97(20):1694–1701. https://doi.org/10.2106/JBJS.O.00148

    Article  Google Scholar 

  28. 28.

    Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Jt Surg Am 83-A(8):1169–1181

    Article  Google Scholar 

  29. 29.

    King HA, Moe JH, Bradford DS, Winter RB (1983) The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Jt Surg Am 65(9):1302–1313

    CAS  Article  Google Scholar 

  30. 30.

    Moe JH (1958) A critical analysis of methods of fusion for scoliosis; an evaluation in two hundred and sixty-six patients. J Bone Jt Surg Am 40-A(3):529–554 ((passim))

    CAS  Article  Google Scholar 

  31. 31.

    Boniello AJ, Hasan S, Yang S, Jalai CM, Worley N, Passias PG (2015) Selective versus nonselective thoracic fusion in Lenke 1C curves: a meta-analysis of baseline characteristics and postoperative outcomes. J Neurosurg Spine 23(6):721–730. https://doi.org/10.3171/2015.1.SPINE141020

    Article  PubMed  Google Scholar 

  32. 32.

    Schulz J, Asghar J, Bastrom T, Shufflebarger H, Newton PO, Sturm P, Betz RR, Samdani AF, Yaszay B (2014) Optimal radiographical criteria after selective thoracic fusion for patients with adolescent idiopathic scoliosis with a C lumbar modifier: does adherence to current guidelines predict success? Spine (Phila Pa 1976) 39(23):E1368-1373. https://doi.org/10.1097/BRS.0000000000000580

    Article  Google Scholar 

  33. 33.

    Sudo HS, Mayer MM, Kaneda KK, Núñez-Pereira S, Shono SY, Hitzl WH, Iwasaki NI, Koller HK (2016) Maintenance of spontaneous lumbar curve correction following thoracic fusion of main thoracic curves in adolescent idiopathic scoliosis. Bone Jt J 98-B(7):997–1002. https://doi.org/10.1302/0301-620x.98b7.37587

    CAS  Article  Google Scholar 

  34. 34.

    Chang MS, Bridwell KH, Lenke LG, Cho W, Baldus C, Auerbach JD, Crawford CH 3rd, O’Shaughnessy BA (2010) Predicting the outcome of selective thoracic fusion in false double major lumbar “C” cases with five- to twenty-four-year follow-up. Spine (Phila Pa 1976) 35(24):2128–2133. https://doi.org/10.1097/BRS.0b013e3181e5e36e

    Article  Google Scholar 

  35. 35.

    Goshi K, Boachie-Adjei O, Moore C, Nishiyama M (2004) Thoracic scoliosis fusion in adolescent and adult idiopathic scoliosis using posterior translational corrective techniques (Isola): is maximum correction of the thoracic curve detrimental to the unfused lumbar curve? Spine J 4(2):192–201. https://doi.org/10.1016/j.spinee.2003.08.025

    Article  PubMed  Google Scholar 

  36. 36.

    Richards BS (1992) Lumbar curve response in type II idiopathic scoliosis after posterior instrumentation of the thoracic curve. Spine (Phila Pa 1976) 17(8 Suppl):S282-286

    CAS  Article  Google Scholar 

  37. 37.

    Richards BS (2007) Lenke 1C, King type II curves: surgical recommendations. Orthop Clin N Am 38(4):511–520, vi. https://doi.org/10.1016/j.ocl.2007.05.004

    Article  Google Scholar 

  38. 38.

    Arlet V, Marchesi D, Papin P, Aebi M (2000) Decompensation following scoliosis surgery: treatment by decreasing the correction of the main thoracic curve or “letting the spine go.” Eur Spine J 9(2):156–160

    CAS  Article  Google Scholar 

  39. 39.

    Anari JB, Tatad A, Cahill PJ, Flynn JM (2020) The impact of posterior spinal fusion (PSF) on coronal balance in adolescent idiopathic scoliosis (AIS): a new classification and trends in the postoperative period. J Pediatr Orthop. https://doi.org/10.1097/BPO.0000000000001622

    Article  PubMed  Google Scholar 

  40. 40.

    Deacon P, Flood BM, Dickson RA (1984) Idiopathic scoliosis in three dimensions. A radiographic and morphometric analysis. J Bone Jt Surg Br 66(4):509–512

    CAS  Article  Google Scholar 

  41. 41.

    Hayashi K, Upasani VV, Pawelek JB, Aubin C-É, Labelle H, Lenke LG, Jackson R, Newton PO (2009) Three-dimensional analysis of thoracic apical sagittal alignment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(8):792–797. https://doi.org/10.1097/BRS.1090b1013e31818e31812c31836

    Article  Google Scholar 

  42. 42.

    Peelle MW, Boachie-Adjei O, Charles G, Kanazawa Y, Mesfin A (2008) Lumbar curve response to selective thoracic fusion in adult idiopathic scoliosis. Spine J 8(6):897–903. https://doi.org/10.1016/j.spinee.2007.11.010

    Article  PubMed  Google Scholar 

  43. 43.

    Ritzman TF, Upasani VV, Bastrom TP, Betz RR, Lonner BS, Newton PO (2008) Comparison of compensatory curve spontaneous derotation after selective thoracic or lumbar fusions in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 33(24):2643–2647. https://doi.org/10.1097/BRS.0b013e3181891806

    Article  Google Scholar 

  44. 44.

    Schulte TL, Liljenqvist U, Hierholzer E, Bullmann V, Halm HF, Lauber S, Hackenberg L (2006) Spontaneous correction and derotation of secondary curves after selective anterior fusion of idiopathic scoliosis. Spine (Phila Pa 1976) 31(3):315–321. https://doi.org/10.1097/01.brs.0000197409.03396.24

    Article  Google Scholar 

  45. 45.

    Ilharreborde B, Steffen JS, Nectoux E, Vital JM, Mazda K, Skalli W, Obeid I (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36(20):E1306-1313. https://doi.org/10.1097/BRS.0b013e3182293548

    Article  Google Scholar 

  46. 46.

    Bennett JT, Samdani AF, Bastrom TP, Ames RJ, Miyanji F, Pahys JM, Marks MC, Lonner BS, Newton PO, Shufflebarger HL, Yaszay B, Flynn JM, Betz RR, Cahill PJ (2017) Factors affecting the outcome in appearance of AIS surgery in terms of the minimal clinically important difference. Eur Spine J 26(6):1782–1788. https://doi.org/10.1007/s00586-016-4857-x

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research support is gratefully acknowledged from the following: The Rady Children’s Spine Center Research Fund and Research grants to the Setting Scoliosis Straight Foundation in support of Harms Study Group Research from DePuy Synthes Spine, EOS imaging, K2M, Medtronic, NuVasive and Zimmer Biomet.

Funding

o funding was received for this work

Author information

Affiliations

Authors

Contributions

Conception or design of the work; or acquisition, analysis, or interpretation of data for the work: DK, TBS, TPB, CEB, BY, PON. Drafting or critically revising the work: DK, TBS, TPB, CEB, BY, PON. Final approval of the version to be published: DK, TBS, TPB, CEB, BY, PON.

Corresponding author

Correspondence to Peter O. Newton.

Ethics declarations

Ethical approval

Institutional Review Board approval was obtained for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kluck, D., Sullivan, T.B., Bastrom, T.P. et al. Predictors of spontaneous lumbar curve correction in thoracic-only fusions: 3D analysis in AIS. Spine Deform (2020). https://doi.org/10.1007/s43390-020-00231-0

Download citation

Keywords

  • Adolescent idiopathic scoliosis
  • Thoracic fusion
  • Uninstrumented lumbar curve correction
  • Spontaneous lumbar curve correction
  • Kyphosis restoration