Skip to main content
Log in

Severe persistent coronal imbalance following instrumented posterior spinal fusion for adolescent idiopathic scoliosis

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study design

Retrospective case–control study.

Objective

The aim of this study was to identify the risk factors and health-related quality of life (HRQoL) impact of severe (> 4 cm) post-operative coronal imbalance at 2 years following posterior spinal fusion (PSF) for adolescent idiopathic scoliosis (AIS).

Summary of background data

Coronal imbalance is an unfavorable outcome following PSF for AIS, though the degree of imbalance in such patients is typically mild. We hypothesize that a small number of patients become and remain severely imbalanced post-operatively, though this phenomenon has not been well studied.

Methods

Prospectively collected data from a large multicenter registry were reviewed. Patients with severe coronal imbalance (SCIB; > 4 cm) 2 years after PSF were included. Matched controls without SCIB at 2 years were included at a 3:1 ratio. Comparisons were made between demographics, pre-operative radiographic measures, surgical factors, residual post-operative radiographic measures, and 2-year SRS-22 scores.

Results

Nine of 954 (0.9%) patients (88.9% females; mean age 14.8 ± 2.3 years) were found to be severely imbalanced at 2 years. These patients had significantly greater pre-operative bending thoracic curve magnitude (45° vs. 33°; p = 0.013), curve flexibility (22.9% vs. 63.3%; p = 0.004), and kyphosis (41° vs. 26.5°; p = 0.034) compared to matched controls. Pre-operative curve flexibility of < 20% was associated with a 23.8 times greater odds of SCIB (95% CI 2.1—250; p = 0.008). With respect to HRQoL, median SRS-22 pain (4.1 vs. 4.8; p = 0.041), self-image (3.9 vs. 4.6; p = 0.013), general function (4.5 vs. 5; p = 0.022), and total (4.1 vs. 4.7; p = 0.012) scores at 2 years were significantly lower in cases compared to controls.

Conclusions

In the present study, thoracic curve stiffness was a strong risk factor for severe post-operative coronal imbalance, which was associated with poor HRQoL measures. Increased pre-operative thoracic curve stiffness (< 20% flexibility) should raise surgeon awareness for altering surgical approach to minimize the risk of severe post-operative coronal imbalance.

Level of evidence

Level III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop. https://doi.org/10.1007/s11832-012-0457-4

    Article  PubMed  Google Scholar 

  2. Asher MA, Burton DC (2006) Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis. https://doi.org/10.1186/1748-7161-1-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Weinstein SL, Dolan L, Wright JG, Dobbs MB (2014) Effect of bracing adolescent idiopathic scoliosis. N Engl J Med. https://doi.org/10.1056/NEJMoa1307337.Effects

    Article  PubMed  Google Scholar 

  4. de Kleuver M, Lewis SJ, Germscheid NM et al (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J. https://doi.org/10.1007/s00586-014-3356-1

    Article  PubMed  Google Scholar 

  5. Hresko MT (2013) Clinical practice. Idiopathic scoliosis in adolescents. N Engl J Med. https://doi.org/10.1056/NEJMcp1209063

    Article  PubMed  Google Scholar 

  6. Suk SI, Lee CK, Kim WJ, Chung YJ, Park YB (1995) Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-199506020-00012

    Article  Google Scholar 

  7. Puno RM, An KC, Puno RL, Jacob A, Chung SS (2003) Treatment recommendations for idiopathic scoliosis: an assessment of the Lenke classification. Spine (Phila Pa 1976). https://doi.org/10.1097/01.BRS.0000088480.08179.35

    Article  Google Scholar 

  8. Thompson JP, Transfeldt EE, Bradford DS, Ogilvie JW, Boachie-Adjei O (1990) Decompensation after cotrel-dubousset instrumentation of idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-199009000-00017

    Article  Google Scholar 

  9. Lenke LG, Bridwell KH, Baldus C, Blanke K, Schoenecker PL (1992) Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. J Bone Jt Surg Ser A. https://doi.org/10.2106/00004623-199274070-00013

    Article  Google Scholar 

  10. Lenke LG, Bridwell KH, Baldus C, Blanke K (1992) Preventing decompensation in king type ii curves treated with Cotrel-Dubousset instrumentation: strict guidelines for selective thoracic fusion. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-199208001-00011

    Article  Google Scholar 

  11. Demura S, Yaszay B, Bastrom TP, Carreau J, Newton PO (2013) Is decompensation preoperatively a risk in lenke 1C curves? Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e31828cb2a3

    Article  Google Scholar 

  12. Liu Z, Guo J, Zhu Z et al (2013) Role of the upper and lowest instrumented vertebrae in predicting the postoperative coronal balance in Lenke 5C patients after selective posterior fusion. Eur Spine J. https://doi.org/10.1007/s00586-013-2808-3

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang C, Zhao Y, Zhai X, Li J, Zhu X, Li M (2017) Coronal balance in idiopathic scoliosis: a radiological study after posterior fusion of thoracolumbar/lumbar curves (Lenke 5 or 6). Eur Spine J. https://doi.org/10.1007/s00586-016-4844-2

    Article  PubMed  Google Scholar 

  14. McCance SE, Denis F, Lonstein JE, Winter RB (1998) Coronal and sagittal balance in surgically treated adolescent idiopathic scoliosis with the King II curve pattern: a review of 67 consecutive cases having selective thoracic arthrodesis. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-199810010-00005

    Article  Google Scholar 

  15. Sun Z, Qiu G, Zhao Y et al (2014) The effect of unfused segments in coronal balance reconstitution after posterior selective thoracolumbar/lumbar fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000602

    Article  Google Scholar 

  16. Pasha S, Ilharreborde B, Baldwin K (2018) Sagittal spinopelvic alignment after posterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/brs.0000000000002736

    Article  Google Scholar 

  17. Ilharreborde B (2018) Sagittal balance and idiopathic scoliosis: does final sagittal alignment influence outcomes, degeneration rate or failure rate? Eur Spine J. https://doi.org/10.1007/s00586-018-5472-9

    Article  PubMed  Google Scholar 

  18. Sullivan TB, Bastrom TP, Bartley CE et al (2018) Selective thoracic fusion of a left decompensated main thoracic curve: proceed with caution? Eur Spine J. https://doi.org/10.1007/s00586-017-5158-8

    Article  PubMed  Google Scholar 

  19. Studer D, Awais A, Williams N, Antoniou G, Eardley-Harris N, Cundy P (2015) Selective fusion in adolescent idiopathic scoliosis: a radiographic evaluation of risk factors for imbalance. J Child Orthop. https://doi.org/10.1007/s11832-015-0653-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ando K, Imagama S, Ito Z et al (2016) Predictive factors for a distal adjacent disorder with L3 as the lowest instrumented vertebra in Lenke 5C patients. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-015-1712-4

    Article  PubMed  Google Scholar 

  21. Kim SS, Lim DJ, Kim JH et al (2014) Determination of the distal fusion level in the management of thoracolumbar and lumbar adolescent idiopathic scoliosis using pedicle screw instrumentation. Asian Spine J. https://doi.org/10.4184/asj.2014.8.6.804

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li J, Hwang SW, Shi Z et al (2011) Analysis of radiographic parameters relevant to the lowest instrumented vertebrae and postoperative coronal balance in Lenke 5C patients. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e3182091fba

    Article  Google Scholar 

  23. Schwender JD, Denis F (2000) Coronal plane imbalance in adolescent idiopathic scoliosis with left lumbar curves exceeding 40? The role of the lumbosacral hemicurve. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-200009150-00015

    Article  Google Scholar 

  24. Hu B, Yang X, Yang H et al (2018) Coronal imbalance in Lenke 5C adolescent idiopathic scoliosis regarding selecting the lowest instrumented vertebra: lower end vertebra versus lower end vertebra +1 in posterior fusion. World Neurosurg. https://doi.org/10.1016/j.wneu.2018.06.070

    Article  PubMed  PubMed Central  Google Scholar 

  25. Edwards CC, Lenke LG, Peelle M, Sides B, Rinella A, Bridwell KH (2004) Selective thoracic fusion for adolescent idiopathic scoliosis with C modifier lumbar curves: 2- to 16-year radiographic and clinical results. Spine (Phila Pa 1976). https://doi.org/10.1097/01.BRS.0000109992.22248.77

    Article  Google Scholar 

  26. Chang DG, Yang JH, Suk SIL et al (2017) Importance of distal fusion level in major thoracolumbar and lumbar adolescent idiopathic scoliosis treated by rod derotation and direct vertebral rotation following pedicle screw instrumentation. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000001998

    Article  Google Scholar 

  27. Zifang H, Hengwei F, Yaolong D et al (2017) Convex-rod derotation maneuver on Lenke type I adolescent idiopathic scoliosis. Neurosurgery. https://doi.org/10.1093/neuros/nyx102

    Article  PubMed  Google Scholar 

  28. Chang DG, Kim JH, Kim SS, Lim DJ, Ha KY, Suk SIL (2014) How to improve shoulder balance in the surgical correction of double thoracic adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000578

    Article  Google Scholar 

  29. Di Silvestre M, Lolli F, Bakaloudis G, Maredi E, Vommaro F, Pastorelli F (2013) Apical vertebral derotation in the posterior treatment of adolescent idiopathic scoliosis: myth or reality? Eur Spine J. https://doi.org/10.1007/s00586-012-2372-2

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shah SA, Dhawale AA, Oda JE et al (2013) Ponte osteotomies with pedicle screw instrumentation in the treatment of adolescent idiopathic scoliosis. Spine Deform. https://doi.org/10.1016/j.jspd.2013.03.002

    Article  PubMed  Google Scholar 

  31. Good CR, Lenke LG, Bridwell KH et al (2010) Can posterior-only surgery provide similar radiographic and clinical results as combined anterior (thoracotomy/thoracoabdominal)/posterior approaches for adult scoliosis? Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e3181c91163

    Article  Google Scholar 

  32. Diab MG, Franzone JM, Vitale MG (2011) The role of posterior spinal osteotomies in pediatric spinal deformity surgery: indications and operative technique. J Pediatr Orthop. https://doi.org/10.1097/BPO.0b013e3181f73bd4

    Article  PubMed  Google Scholar 

  33. Suk SIL, Kim JH, Cho KJ, Kim SS, Lee JJ, Han YT (2007) Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation? Eur Spine J. https://doi.org/10.1007/s00586-007-0334-x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lenke LG (2011) Anterior endoscopic discectomy and fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/01.brs.0000076896.14492.dc

    Article  Google Scholar 

  35. Niemeyer T, Freeman BJC, Grevitt MP, Webb JK (2000) Anterior thoracoscopic surgery followed by posterior instrumentation and fusion in spinal deformity. Eur Spine J. https://doi.org/10.1007/s005860000181

    Article  PubMed  PubMed Central  Google Scholar 

  36. Newton PO, White KK, Faro F, Gaynor T (2005) The success of thoracoscopic anterior fusion in a consecutive series of 112 pediatric spinal deformity cases. Spine (Phila Pa 1976). https://doi.org/10.1097/01.brs.0000153404.62017.75

    Article  Google Scholar 

  37. Zhou C, Liu L, Song Y, Feng G, Yang X, Wang L (2018) Comparison of anterior and posterior vertebral column resection versus anterior and posterior spinal fusion for severe and rigid scoliosis. Spine J. https://doi.org/10.1016/j.spinee.2017.10.001

    Article  PubMed  Google Scholar 

  38. Suk SIL, Chung ER, Kim JH, Kim SS, Lee JS, Choi WK (2005) Posterior vertebral column resection for severe rigid scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/01.brs.0000170590.21071.c1

    Article  Google Scholar 

  39. Lenke LG, Oleary PT, Bridwell KH, Sides BA, Koester LA, Blanke KM (2009) Posterior vertebral column resection for severe pediatric deformity: Minimum 2-year follow-up of 35 consecutive patients. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0b013e3181b53cba

    Article  Google Scholar 

  40. Lenke LG, Sides BA, Koester LA, Hensley M, Blanke KM (2010) Vertebral column resection for the treatment of severe spinal deformity. Clin Orthop Relat Res. https://doi.org/10.1007/s11999-009-1037-x

    Article  PubMed  Google Scholar 

  41. Kuklo TR, Lenke LG, Won DS et al (2001) Spontaneous proximal thoracic curve correction after isolated fusion of the main thoracic curve in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-200109150-00006

    Article  Google Scholar 

  42. Yao G, Cheung JPY, Shigematsu H et al (2017) Characterization and predictive value of segmental curve flexibility in adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000002046

    Article  Google Scholar 

  43. Schulz J, Asghar J, Bastrom T et al (2014) Optimal radiographical criteria after selective thoracic fusion for patients with adolescent idiopathic scoliosis with a C lumbar modifier: does adherence to current guidelines predict success? Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000000580

    Article  Google Scholar 

  44. Mordecai SC, Dabke HV (2012) Efficacy of exercise therapy for the treatment of adolescent idiopathic scoliosis: a review of the literature. Eur Spine J. https://doi.org/10.1007/s00586-011-2063-4

    Article  PubMed  Google Scholar 

  45. Koch KD, Buchanan R, Birch JG, Morton AA, Gatchel RJ, Browne RH (2001) Adolescents undergoing surgery for idiopathic scoliosis: how physical and psychological characteristics relate to patient satisfaction with the cosmetic result. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-200110010-00015

    Article  Google Scholar 

  46. Haher TR, Gorup JM, Shin TM et al (1999) Results of the scoliosis research society instrument for evaluation of surgical outcome in adolescent idiopathic scoliosis: a multicenter study of 244 patients. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-199907150-00008

    Article  Google Scholar 

  47. Wilson PL, Newton PO, Wenger DR et al (2002) A multicenter study analyzing the relationship of a standardized radiographic scoring system of adolescent idiopathic scoliosis and the Scoliosis Research Society outcomes instrument. Spine (Phila Pa 1976). https://doi.org/10.1097/00007632-200209150-00013

    Article  Google Scholar 

  48. Ghandehari H, Mahabadi MA, Mahdavi SM, Shahsavaripour A, Seyed Tari HV, Safdari F (2015) Evaluation of patient outcome and satisfaction after surgical treatment of adolescent idiopathic scoliosis using Scoliosis Research Society-30. Arch Bone Jt Surg 3:109–113

    PubMed  PubMed Central  Google Scholar 

  49. Freidel K, Petermann F, Reichel D, Steiner A, Warschburger P, Weiss HR (2002) Quality of life in women with idiopathic scoliosis. Spine (Phila Pa 1976) 27:E87–E91

    Article  Google Scholar 

Download references

Funding

The main institution receives funding from the Setting Scoliosis Straight Foundation in support of Harms Study Group research. IRB approval: This study was approved by the Institutional Review Board.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Conception or design of work: JBA and JMF. Acquisition, analysis, or interpretation of data for the work: JBA, SML, AMT, and JMF. Drafting of work or revising it critically for important intellectual content: JBA, SML, JMF, and HSG. Final approval of version to be published: JBA, SML, AMT, JMF, and HSG.

Corresponding author

Correspondence to John M. Flynn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anari, J.B., LaValva, S.M., Flynn, J.M. et al. Severe persistent coronal imbalance following instrumented posterior spinal fusion for adolescent idiopathic scoliosis. Spine Deform 8, 1295–1304 (2020). https://doi.org/10.1007/s43390-020-00153-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-020-00153-x

Keywords

Navigation