Skip to main content

Advertisement

Log in

Induced pressures on the epiphyseal growth plate with non segmental anterior spine tethering

  • Biomechanics
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study design

Experimental biomechanical study of pressures exerted on the epiphyseal growth plates (GP) in tethered porcine cadaveric spines.

Objectives

To experimentally measure the pressure exerted on the vertebral end plates of a tethered porcine spine model.

Summary of background data

Flexible spine tethering is a novel fusionless surgical technique that aims to correct scoliotic deformities based on growth modulation due to the pressure exerted on vertebral body epiphyseal GP. The applied pressure resulting from spine tethering remains not well documented.

Methods

The ligamentous thoracic segment (T1–T14) of four 3-months old Duroc Landrace pigs (female; 22 kg, range: 18–27 kg) was positioned in lateral decubitus in a custom-made stand. Vertebra T14 was clamped but the remaining spine was free to slide horizontally. For every specimen, six configurations were tested: three or five instrumented motion segments (T5–T10 or T7–T10) with applied compression of 22, 44 or 66 N. The pressure generated on the GPs in the tethered side was measured with a thin force sensor slid either at the proximal, apex or distal levels. The data were analyzed with an ANOVA.

Results

The pressure was significantly different between three and five instrumented motion segments (averages of 0.76 MPa ± 0.03 and 0.60 MPa ± 0.03, respectively; p < 0.05), but the pressure exerted on each GP along the instrumented spine was not significantly different for a given number of instrumented levels. The pressure was linearly correlated to the tether tension.

Conclusions

Non segmental anterior spine tethering induced similar pressures on every instrumented level regardless of the number of instrumented levels, with 21% lesser pressures with 5 motion segments.

Level of evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tambe AD, Panikkar SJ, Millner PA, Tsirikos AI (2018) Current concepts in the surgical management of adolescent idiopathic scoliosis. Bone Jt J 100-B(4):415–424

    Article  CAS  Google Scholar 

  2. Schlager B, Ismael Aguirre M-F, Wilke H-J, Galbusera F (2018) Scoliosis. Elsevier, Amsterdam

    Google Scholar 

  3. Djurasovic M, Glassman SD, Sucato DJ, Lenke LG, Crawford CH, Carreon LY (2016) Improvement in SRS22R pain scores after surgery for adolescent idiopathic scoliosis. Spine (Phila. Pa. 1976) 43(2):127–132

    Article  Google Scholar 

  4. Goldberg CJ, Moore DP, Fogarty EE, Dowling FE (2007) Scoliosis: a review. Pediatr Surg Int 24(2):129–144

    Article  PubMed  Google Scholar 

  5. Dimeglio A, Canavese F, Charles YP (2011) Growth and adolescent idiopathic scoliosis: when and how much? J Pediatr Orthop 31(1):28–36

    Article  Google Scholar 

  6. Murphy RF, Mooney JF (2017) The crankshaft phenomenon. J Am Acad Orthop Surg 25(9):e185–e193

    Article  PubMed  Google Scholar 

  7. Skaggs DL, Akbarnia BA, Flynn JM, Myung KS, Sponseller PD, Vitale MG (2013) A classification of growth friendly spine implants. J Pediatr Orthop 34(3):260–274

    Article  Google Scholar 

  8. Driscoll M, Aubin C-E, Moreau A, Parent S (2011) Biomechanical comparison of fusionless growth modulation corrective techniques in pediatric scoliosis. Med Biol Eng Comput 49(12):1437–1445

    Article  PubMed  Google Scholar 

  9. Ames RJ, Samdani AF, Betz RR (2016) Anterior scoliosis correction in immature patients with idiopathic scoliosis. Oper Tech Orthop 26(4):247–257

    Article  Google Scholar 

  10. Pahys JM et al (2015) The first 100 consecutive anterior vertebral body tethering procedures for immature adolescent idiopathic scoliosis at a single institution: outcomes and complications in the early postoperative period. In: International meeting on advanced spine techniques, pp 200–201

  11. Meir AR, Fairbank JCT, Jones DA, McNally DS, Urban JPG (2007) “High pressures and asymmetrical stresses in the scoliotic disc in the absence of muscle loading. Scoliosis 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stokes IA, Spence H, Aronsson DD, Kilmer N (1996) Mechanical modulation of vertebral body growth: implications for scoliosis progression. Spine (Phila. Pa. 1976) 21(10):1162–1167

    Article  CAS  Google Scholar 

  13. Cobetto N, Aubin CE, Parent S (2018) Surgical planning and follow-up of anterior vertebral body growth modulation in pediatric idiopathic scoliosis using a patient-specific finite element model integrating growth modulation. Spine Deform 6(4):344–350

    Article  PubMed  Google Scholar 

  14. Aubin C, Parent S, Villemure I, Amini S, Driscoll M, Moldovan F (2014) Dynamic fusionless device for the correction of adolescent idiopathic scoliosis. WO2014127464 A1

  15. Ménard A-L, Grimard G, Valteau B, Londono I, Moldovan F, Villemure I (2014) In vivo dynamic loading reduces bone growth without histomorphometric changes of the growth plate. J Orthop Res 32(9):1129–1136

    Article  PubMed  Google Scholar 

  16. Bazergui A, Biron A, Bui-Quoc T, Laberge C, McIntyre G (2002) Résistance des matériaux, 3rd edn. Presses internationales de Polytechnique. ISBN 9782553010347

  17. Villemure I, Stokes IAF (2009) Growth plate mechanics and mechanobiology. A survey of present understanding. J Biomech 42(12):1793–1803

    Article  PubMed  PubMed Central  Google Scholar 

  18. Courvoisier A, Eid A, Bourgeois E, Griffet J (2015) Growth tethering devices for idiopathic scoliosis. Expert Rev Med Devices 12(October):449–456

    Article  CAS  PubMed  Google Scholar 

  19. Chay E et al (2012) Impact of unilateral corrective tethering on the histology of the growth plate in an established porcine model for thoracic scoliosis. Spine (Phila. Pa. 1976) 37(15):E883–E889

    Article  Google Scholar 

  20. Cobetto N, Parent S, Aubin CE (2018) 3D correction over 2 years with anterior vertebral body growth modulation: a finite element analysis of screw positioning, cable tensioning and postoperative functional activities. Clin Biomech 51(November 2017):26–33

    Article  Google Scholar 

  21. Aubin CÉ, Clin J, Rawlinson J (2018) Biomechanical simulations of costo-vertebral and anterior vertebral body tethers for the fusionless treatment of pediatric scoliosis. J Orthop Res 36(1):254–264

    PubMed  Google Scholar 

  22. Hachem B, Aubin CE, Parent S (2017) Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation. Eur Spine J 26(6):1610–1617

    Article  PubMed  Google Scholar 

  23. Newton PO et al (2008) Spinal growth modulation with use of a tether in an immature porcine model. J Bone Jt Surg Am 90(12):2695–2706

    Article  Google Scholar 

  24. Schmidt H, Heuer F, Wilke H (2008) Interaction between finite helical axes and facet joint forces under combined loading. Spine (Phila. Pa. 1976) 33(25):2741–2748

    Article  Google Scholar 

  25. Ekström L, Holm S, Holm AK, Hansson T (2004) In vivo porcine intradiscal pressure as a function of external loading. J Spinal Disord Tech 17(4):312–316

    Article  PubMed  Google Scholar 

  26. Cobetto N, Aubin CE, Parent S (2018) Contribution of lateral decubitus positioning and cable tensioning on immediate correction in anterior vertebral body growth modulation. Spine Deform 6(5):507–513

    Article  PubMed  Google Scholar 

  27. Busscher I, Ploegmakers JJW, Verkerke GJ, Veldhuizen AG (2010) Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J 19(7):1104–1114

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smit TH (2002) The use of a quadruped as an in vivo model for the study of the spine: biomechanical considerations. Eur Spine J 11(2):137–144

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moal B et al (2013) The impact of a corrective tether on a scoliosis porcine model: a detailed 3D analysis with a 20 weeks follow-up. Eur Spine J 22(8):1800–1809

    Article  PubMed  PubMed Central  Google Scholar 

  30. Roth AK, Bogie R, Jacobs E, Arts JJ, van Rhijn LW (2013) “Large animal models in fusionless scoliosis correction research: a literature review. Spine J 13(6):675–688

    Article  PubMed  Google Scholar 

  31. Schwab F, Patel A, Lafage V, Farcy J-P (2009) “A porcine model for progressive thoracic scoliosis. Spine (Phila. Pa. 1976) 34(11):E397–E404

    Article  Google Scholar 

  32. Ouellet J, Odent T (2013) Animal models for scoliosis research: state of the art, current concepts and future perspective applications. Eur Spine J 22(Suppl 2):S81–S95

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author wish to acknowledge the help of Leonardo Ruiz for his participation during the experiments as well as the Natural Sciences and Engineering Research Council of Canada and Medtronic of Canada (industrial research chair program).

Funding

Pr Aubin’s Natural Sciences and Engineering Research Council of Canada (NSERC)/Medtronic industrial research Chair.

Author information

Authors and Affiliations

Authors

Contributions

VL, IV, SP, C-EA: Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. VL, IV, SP, C-EA: Drafting the work or revising it critically for important intellectual content. VL, IV, SP, C-EA: Final approval of the version to be published.

Corresponding author

Correspondence to Carl-Éric Aubin.

Ethics declarations

IRB

Cadaveric specimen from slaughterhouses, no IRB needed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalande, V., Villemure, I., Parent, S. et al. Induced pressures on the epiphyseal growth plate with non segmental anterior spine tethering. Spine Deform 8, 585–589 (2020). https://doi.org/10.1007/s43390-020-00070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43390-020-00070-z

Keywords

Navigation