Skip to main content
Log in

Fast dynamic DC-link voltage control strategy for dual three-phase PM-assisted synchronous reluctance starter/generator system

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This paper proposes a fast dynamic DC-link voltage control strategy for dual three-phase permanent-magnet-assisted synchronous reluctance starter/generator (DTP-PMa-SRS/G) system. First, the model of a DTP-PMa-SRS/G is analyzed considering its asymmetric structure. A power balance strategy is adopted to solve the coupling problem between two sets of windings. Then the power model of the starter/generator system is analyzed considering the disturbance caused by inherent parameter uncertainty and external load variation. To improve the dynamic response performance of the DC-link voltage, an integral terminal sliding-mode DC-link voltage controller (ITSMVC) with an extended state observer (ESO) is proposed. The system stability is verified by Lyapunov theory. A simple parameter design method for the proposed ESO-ITSMVC is adopted to ensure satisfactory performance. Finally, a comparison of experimental results with the conventional ITSMVC, the active-disturbance rejection controller (ADRC), and the disturbance observer-ITSMVC (DO-ITSMVC) is carried out. The superior DC-link voltage dynamic response performance of the proposed method is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

L s :

Inductance matrix of one set of windings

L PP :

Self-inductance of one set of windings

L 0, L 2 :

DC and 2nd harmonic components of the self-inductance of one set of windings

θ P :

Phase angle of the AC self-inductance of one set of windings

θ e :

Electrical angle

L XY (X, Y = A, B, C):

Mutual inductance between phase X and phase Y for one set of windings (when X ≠ Y). Self-inductance for one set of winding (when X = Y)

M 01, M 02 :

Average components of the mutual inductance

L 21 :

2Nd harmonic component of the mutual inductance between phase A/B and phase C (for one set of windings)

L 22 :

2Nd harmonic component of the mutual inductance between phase A and phase B (for one set of windings)

L dq 12, L dq 21 :

Mutual inductance matrix between two sets of windings

L dq 11, L dq 22 :

Inductance matrix of one set of windings

L a, L b, L c :

Self-inductance of phases A, B, and C

\(L_{d}^{equ} ,L_{q}^{equ} ,L_{dq}^{equ}\) :

Equivalent inductance matrix of the motor in the d-axis and the q-axis

u dq 1, u dq 2, u dq :

Voltage matrixes of two sets of windings and the equivalent voltage matrix in the dq-axis

i dq 1, i dq 2, i dq :

Current matrixes of two sets of windings and the total current matrix in the dq-axis

R s :

Phase resistance of the motor

R L :

Load resistance

ψ m :

Rotor permanent flux

ω e, ω n :

Electrical and mechanical angular speed

N :

Pole pair numbers of the motor

T e :

Electromagnetic torque of the motor

u dc :

DC-link voltage

C, C 0, ΔC :

Real value, nominal value, and difference of DC-link capacitor

f in, f ex, f all :

Internal, external, and total disturbance of the DTP-PMa-SRS/G system

c, γ, η :

Positive coefficients of the sliding-mode control

β 1, β 2 :

Positive coefficients of the ESO

References

  1. Nøland, J.K., Leandro, M., Suul, J.A., Molinas, M.: High-power machines and starter-generator topologies for more electric aircraft: a technology outlook. IEEE Access 8, 130104–130123 (2020)

    Article  Google Scholar 

  2. Sarlioglu, B., Morris, C.T.: More electric aircraft: review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transport. Electrific. 1(1), 54–64 (2015)

    Article  Google Scholar 

  3. Meng, T., Liu, W., Jiao, N., Han, X., Wang, R., Jiang, Y.: Rotor position estimation for aviation three-stage starter/generators in the low-speed region without high-frequency signal injection. IEEE Trans. Power Electron. 35(8), 8405–8416 (2020)

    Article  Google Scholar 

  4. Zhou, X., Zhou, B., Wang, K., Zhang, L., Zhao, Y.: Two-step rotor position estimation method for doubly salient electromagnetic starter-generator over zero and low speeds range. IEEE J. Emerg. Select. Topics Power Electron. 9(3), 2664–2673 (2021)

    Article  Google Scholar 

  5. Wang, J., Wei, J., Zhang, L., Hu, C., Zhang, Z., Zhou, B.: Improved rotor position estimation method for brushless synchronous starter/generator based on field harmonic signals self-injection scheme. IEEE Trans. Transport. Electrific. 9(2), 3375–3385 (2023)

    Article  Google Scholar 

  6. Pang, J., Liu, W., Jiao, N., Wang, J., Ma, P.: Calculation of cross-coupling inductance and electromagnetic torque in wound-rotor synchronous starter/generator. IEEE Trans. Industr. Electron. 66(7), 5115–5123 (2019)

    Article  Google Scholar 

  7. Song, S., Hei, R., Ma, R., Liu, W.: Model predictive control of switched reluctance starter/generator with torque sharing and compensation. IEEE Trans. Transport. Electrific. 6(4), 1519–1527 (2020)

    Article  Google Scholar 

  8. J. Borg-Bartolo, M. Degano, J. Espina and C. Gerada (2017) "Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application." IEEE Trans. Indust. Electron. 64(2), 988–997

  9. Zhang, Z., Huang, J., Jiang, Y., Geng, W., Xu, Y.: Overview and analysis of PM starter/generator for aircraft electrical power systems. CES Trans. Electr. Mach. Syst. 1(2), 117–131 (2017)

    Article  Google Scholar 

  10. Kulan, M.C., Baker, N.J., Widmer, J.D.: Design and analysis of compressed windings for a permanent magnet integrated starter generator. IEEE Trans. Ind. Appl. 53(4), 3371–3378 (2017)

    Article  Google Scholar 

  11. Zhao, M., Liu, G., Chen, Q., Zhao, W., Lee, C.H.T.: Fault-tolerant control of a triple redundant PMa-SynRM driven under single-phase open-circuit by mono-inverter. IEEE Trans. Power Electron. 36(10), 11593–11605 (2021)

    Article  Google Scholar 

  12. Trancho, E., et al.: PM-assisted synchronous reluctance machine flux weakening control for EV and HEV applications. IEEE Trans. Industr. Electron. 65(4), 2986–2995 (2018)

    Article  Google Scholar 

  13. Wang, B., Wang, J., Griffo, A., Shi, Y.: Investigation into fault-tolerant capability of a triple redundant PMA SynRM drive. IEEE Trans. Power Electron. 34(2), 1611–1621 (2019)

    Article  Google Scholar 

  14. Guo, H., et al.: Design of an aviation dual-three-phase high-power high-speed permanent magnet assisted synchronous reluctance starter-generator with antishort-circuit ability. IEEE Trans. Power Electron. 37(10), 12619–12635 (2022)

    Article  Google Scholar 

  15. Liu, Z., Fan, X., Kong, W., Cao, L., Qu, R.: Improved small-signal injection-based online multiparameter identification method for IPM machines considering cross-coupling magnetic saturation. IEEE Trans. Power Electron. 37(12), 14362–14374 (2022)

    Article  Google Scholar 

  16. Gao, F., Zheng, X., Bozhko, S., Hill, C.I., Asher, G.: Modal analysis of a PMSG-based DC electrical power system in the more electric aircraft using eigenvalues sensitivity. IEEE Trans. Transport. Electrific. 1(1), 65–76 (2015)

    Article  Google Scholar 

  17. Zhang, X., Yang, J.: A robust flywheel energy storage system discharge strategy for wide speed range operation. IEEE Trans. Industr. Electron. 64(10), 7862–7873 (2017)

    Article  Google Scholar 

  18. Huang, J., Zhang, Z., Han, J., Jiang, W.: Dynamic performance improvement for permanent magnet generator system using current compensating method with two-degrees-of-freedom control. IEEE Trans. Industr. Electron. 68(4), 2823–2833 (2021)

    Article  Google Scholar 

  19. Xu, Y., Zhang, Z., Bian, Z., Yu, L.: Dynamic performance improvement of doubly salient brushless DC generator system with controlled rectifier. IEEE Trans. Industr. Electron. 67(10), 8209–8218 (2020)

    Article  Google Scholar 

  20. Zhang, X., Yang, J.: A DC-link voltage fast control strategy for high-speed PMSM/G in flywheel energy storage system. IEEE Trans. Ind. Appl. 54(2), 1671–1679 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lang, X., Yang, T., Bai, G., Bozhko, S., Wheeler, P.: Active disturbance rejection control of DC-bus voltages within a high-speed aircraft electric starter/generator system. IEEE Trans. Transport. Electrific. 8(12), 4229–4241 (2022)

    Article  Google Scholar 

  22. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  23. Xu, B., Zhang, L., Ji, W.: Improved non-singular fast terminal sliding mode control with disturbance observer for PMSM drives. IEEE Trans. Transport. Electrific. 7(12), 2753–2762 (2021)

    Google Scholar 

  24. Li, Z., Wu, L., Chen, Z., Shi, Y., Qiu, L., Fang, Y.: Single- and two-phase open-circuit fault tolerant control for dual three-phase PM motor without phase shifting. IEEE Access 8, 171945–171955 (2020)

    Article  Google Scholar 

  25. Zhang, W., Xu, Y., Huang, H., Zou, J.: Vibration reduction for dual-branch three-phase permanent magnet synchronous motor with carrier phase-shift technique. IEEE Trans. Power Electron. 35(6), 607–618 (2020)

    Article  Google Scholar 

  26. Dianov, A., Anuchin, A., Bodrov, A.: Robust MTPA control for steady-state operation of low-cost IPMSM drives. IEEE J. Emerg. Select. Topics Industr. Electron. 3(2), 242–251 (2022)

    Article  Google Scholar 

  27. Bedetti, N., Calligaro, S., Olsen, C., Petrella, R.: Automatic MTPA tracking in IPMSM drives: loop dynamics, design, and auto-tuning. IEEE Trans. Ind. Appl. 53(9), 4547–4558 (2017)

    Article  Google Scholar 

  28. Dianov, A., Tinazzi, F., Calligaro, S., Bolognani, S.: Review and classification of MTPA control algorithms for synchronous motors. IEEE Trans. Power Electron. 37(4), 3990–4007 (2022)

    Article  Google Scholar 

  29. Qu, J., Jatskevich, J., Zhang, C., Zhang, S.: Torque ripple reduction method for permanent magnet synchronous machine drives with novel harmonic current control. IEEE Trans. Energy Convers. 36(3), 2502–2513 (2021)

    Article  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (Grant 51977095) Basic and Applied Basic Research Foundation of Guangdong Province (Grant 2021B1515120044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zimin Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, S., Li, Z., Tan, Y. et al. Fast dynamic DC-link voltage control strategy for dual three-phase PM-assisted synchronous reluctance starter/generator system. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00842-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00842-0

Keywords

Navigation