Skip to main content
Log in

Multi-resonant three-port DC-DC converter with power decoupling under resonant parameter deviations

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

This article proposes a multi-resonant three-port DC-DC converter (MRTPC) that can achieve power decoupling in the presence of deviations in the parameters of the resonant elements. The MRTPC consists of a four-element resonant tank (FERT), a three-element resonant tank (TERT), and an LC resonant tank (LCRT). Due to the fact that the FERT can be configured with first and third resonant frequencies (RF), it can transmit the energy of the fundamental and third harmonic components. By reasonably setting the RFs of the FERT, TERT, and LCRT, decoupling control of primary and tertiary energy transmission can be achieved. Due to the characteristics of the FERT, TERT and LCRT at different frequencies, decoupling the transmission of the power of the primary and tertiary frequency components can be achieved even when there is a certain deviation in the parameters of the resonant elements of the FERT. This feature can effectively reduce the cost of selecting resonant elements. To improve the efficiency of the MRTPC, an optimized triple-phase-shift modulation strategy (OTPSMS) is proposed to minimize the root mean square value of the resonant current (RMSRC). For the nonlinear problem of minimizing the RMSRC, the KKT condition is used for the optimization solution. Finally, an experimental prototype with a power level of 1 kW is built to verify the theoretical correctness of the MRTPC and its OTPSMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data is available on request from the authors.

References

  1. Chen, H., Xu, D., Deng, X.: Control for power converter of small-scale switched reluctance wind power generator. IEEE Trans. Industr. Electron. 68(4), 3148–3158 (2021)

    Article  Google Scholar 

  2. Hara, S., Douzono, H., Imamura, M., Yoshioka, T.: Estimation of photovoltaic cell parameters using measurement data of photovoltaic module string currents and voltages. IEEE J. Photovolt. 12(2), 540–545 (2022)

    Article  Google Scholar 

  3. Li, X., Wang, S.: Energy management and operational control methods for grid battery energy storage systems. CSEE J. Power Energy Syst. 7(5), 1026–1040 (2021)

    Google Scholar 

  4. Kang, W., Chen, M., Guan, Y., Tang, L., Vasquez, J.C., Guerrero, J.M.: Distributed event-triggered optimal control method for heterogeneous energy storage systems in smart grid. IEEE Trans. Sustain. Energy 13(4), 1944–1956 (2022)

    Article  Google Scholar 

  5. Hou, N., Zhang, Y., Li, Y., Ding, L., Li, Y.: Topologies and operations of hybrid-type DC–DC converters interfacing DC-current bus and DC-voltage bus. IEEE J. Emerg. Selected Topics Power Electron. 11(4), 4212–4221 (2023)

    Article  Google Scholar 

  6. Goyal, V.K., Shukla, A.: Isolated DC–DC boost converter for wide input voltage range and wide load range applications. IEEE Trans. Industr. Electron. 68(10), 9527–9539 (2021)

    Article  Google Scholar 

  7. Wu, F., Wang, K., Luo, S.: Hybrid-three-level current-fed series-resonant isolated DC-DC converter and its optimization modulation strategy. IEEE Trans. Power Electron. 37(1), 196–205 (2022)

    Article  Google Scholar 

  8. Farhangi, B., Toliyat, H.A.: Modeling and analyzing multiport isolation transformer capacitive components for onboard vehicular power conditioners. IEEE Trans. Industr. Electron. 62(5), 3134–3142 (2015)

    Article  Google Scholar 

  9. Mou, D., et al.: Reactive power minimization for modular multi-active-bridge converter with whole operating range. IEEE Trans. Power Electron. 38(7), 8011–8015 (2023)

    Article  Google Scholar 

  10. Keshmiri, N., Mudiyanselage, G.A., Chakkalakkal, S., Kozielski, K., Pietrini, G., Emadi, A.: Design and control methodology of a three-port resonant converter for electric vehicles. IEEE Open J. Ind. Electron. Soc. 3, 650–662 (2022)

    Article  Google Scholar 

  11. Phattanasak, M., Gavagsaz-Ghoachani, R., Martin, J.-P., Nahid-Mobarakeh, B., Pierfederici, S., Davat, B.: Control of a hybrid energy source comprising a fuel cell and two storage devices using isolated three-port bidirectional DC–DC converters. IEEE Trans. Ind. Appl. 51(1), 491–497 (2015)

    Article  Google Scholar 

  12. Kougioulis, I., Pal, A., Wheeler, P., Ahmed, M.R.: An isolated multiport DC–DC converter for integrated electric vehicle on-board charger. IEEE J. Emerg. Selected Topics Power Electron. 11(4), 4178–4198 (2023)

    Article  Google Scholar 

  13. Cai, Y., Gu, C., Li, J., Yang, J., Buticchi, G., Zhang, H.: Dynamic performance enhancement of a triple active bridge with power decoupling-based configurable model predictive control. IEEE Trans. Transp. Electrif. 9(2), 3338–3349 (2023)

    Article  Google Scholar 

  14. Repecho, V., Olm, J.M., Griñó, R., Dòria-Cerezo, A., Fossas, E.: Modelling and nonlinear control of a magnetically coupled multiport dc-dc converter for automotive applications. IEEE Access 9, 63345–63355 (2021)

    Article  Google Scholar 

  15. Ohno, T., Hoshi, N.: Current tracking control of triple active bridge DC/DC converter under varying DC-bus voltage conditions. IEEE Open J. Power Electron. 3, 834–845 (2022)

    Article  Google Scholar 

  16. Tran, Y.-K., Freijedo, F.D., Dujic, D.: Open-loop power sharing characteristic of a three-port resonant LLC converter. CPSS Trans. Power Electron. Appl. 4(2), 171–179 (2019)

    Article  Google Scholar 

  17. Wang, Y., Han, F., Yang, L., Xu, R., Liu, R.: A three-port bidirectional multi-element resonant converter with decoupled power flow management for hybrid energy storage systems. IEEE Access 6, 61331–61341 (2018)

    Article  Google Scholar 

  18. Krishnaswami, H., Mohan, N.: Three-port series-resonant DC–DC converter to interface renewable energy sources with bidirectional load and energy storage ports. IEEE Trans. Power Electron. 24(10), 2289–2297 (2009)

    Article  Google Scholar 

  19. Zhao, S., Chen, Y., Cui, S., Mortimer, B.J., De Doncker, R.W.: Three-port bidirectional operation scheme of modular-multilevel DC–DC converters interconnecting MVDC and LVDC grids. IEEE Trans. Power Electron. 36(7), 7342–7348 (2021)

    Article  Google Scholar 

  20. Jakka, V.N.S.R., Shukla, A., Demetriades, G.D.: Dual-transformer-based asymmetrical triple-port active bridge (DT-ATAB) isolated DC–DC converter. IEEE Trans. Industr. Electron. 64(6), 4549–4560 (2017)

    Article  Google Scholar 

  21. Wang, P., Lu, X., Wang, W., Xu, D.: Hardware decoupling and autonomous control of series-resonance-based three-port converters in DC microgrids. IEEE Trans. Ind. Appl. 55(4), 3901–3914 (2019)

    Article  Google Scholar 

  22. Wu, F., Liu, W., Wang, K., G. wang,: Modeling and closed-loop control of three-port isolated current-fed resonant DC-DC converter. IEEE Trans. Transp. Electrif. 9(1), 1341–1349 (2023)

    Article  Google Scholar 

  23. Wu, J., Yan, X., Sun, X., Su, X., Du, H., Wang, X.: A series resonant three-port DC–DC converter with decoupling function and magnetic integration. IEEE Trans. Power Electron. 37(12), 14720–14737 (2022)

    Article  Google Scholar 

  24. Wang, K., Liu, W., Wu, F.: Topology-level power decoupling three-port isolated current-fed resonant DC-DC converter. IEEE Trans. Industr. Electron. 69(5), 4859–4868 (2022)

    Article  Google Scholar 

  25. Tang, X., Wu, H., Hua, W., Yu, Z., Xing, Y.: Three-port bidirectional series-resonant converter with first-harmonic-synchronized PWM. IEEE J. Emerg. Selected Topics Power Electron. 9(2), 1410–1419 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Introduction Plan for High end Foreign Experts G2023179006L and Joint Guidance Project of Heilongjiang Natural Science Foundation under Grant LH2021E067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchen Liu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, H. Multi-resonant three-port DC-DC converter with power decoupling under resonant parameter deviations. J. Power Electron. (2024). https://doi.org/10.1007/s43236-024-00829-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43236-024-00829-x

Keywords

Navigation