Skip to main content
Log in

Digital linear slope control method for improving the load transient response of a buck converter

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Digital linear slope control (LSC) method is proposed to reduce the output voltage deviation during the load transient of a buck converter. The proposed LSC method modulates the slope of the control signal to suppress the output voltage deviation. The LSC method utilizes the information of the output voltage only and is realized simply by adding a few lines to the digital code of the conventional VMC. The mathematical analysis is conducted to prove the feasibility of the LSC method and the algorithms for the LSC method are presented. A 15 V–5 V 100-kHz prototype buck converter was built and tested to verify the performance of the LSC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data that support the findings of the study are available from the first and corresponding authors, upon reasonable request.

References

  1. Chen, C.L., Lai, W.J., Liu, T.H., Chen, K.H.: Zero current detection technique for fast transient response in buck DC–DC converters, 2008 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2214–2217 (2008)

  2. Malcovati, P., Belloni, M., Gozzini, F., Bazzani, C., Baschirotto, A.: A 0.18-µm CMOS, 91%-efficiency, 2-A scalable buck-boost DC–DC converter for LED drivers. IEEE Trans. Power Electron. 29(10), 5392–5398 (2014)

    Article  Google Scholar 

  3. Khan, N., Piqué, G.V., Pigott, J., Bergveld, H.J., Sherif, A.E., Trescases, O.: An auxiliary-assisted dual-inductor hybrid DC–DC converter with adaptive inductor slew rate for fast transient response in 48-V automotive PoL applications, 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6 (2022)

  4. Sable, D.M., Ridley, R.B.: Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation. IEEE Trans. Power Electron. 7(1), 136–142 (1992)

    Article  Google Scholar 

  5. Choi, B.: Step load response of a current-mode-controlled DC-to-DC converter. IEEE Trans. Aerosp. Electron. Syst. 33(4), 1115–1121 (1997)

    Article  Google Scholar 

  6. D. Goder, D., Pelletier, W.R.: V2 architecture provides ultra-fast transient response in switch power supplies. In: Proc. HFPC Conf., pp. 19–23 (1996)

  7. Zhou, G., Xu, J., Wang, J.: Constant-frequency peak-ripple-based control of buck converter in CCM: review, unification, and duality. IEEE Trans. Industr. Electron. 61(3), 1280–1291 (2014)

    Article  Google Scholar 

  8. Tian, S., Lee, F.C., Li, Q., Yan, Y.: Unified equivalent circuit model and optimal design of V2 controlled buck converters. IEEE Trans. Power Electron. 31(2), 1734–1744 (2016)

    Article  Google Scholar 

  9. Duan, X., Huang, A.Q.: Current-mode variable-frequency control architecture for high-current low-voltage DC–DC converters. IEEE Trans. Power Electron. 21(4), 1133–1137 (2006)

    Article  Google Scholar 

  10. Yan, Y., Lee, F.C., Mattavelli, P.: Comparison of small signal characteristics in current mode control schemes for point-of-load buck converter applications. IEEE Trans. Power Electron. 28(7), 3405–3414 (2013)

    Article  Google Scholar 

  11. Bari, S., Li, Q., Lee, F.C.: A new fast adaptive on-time control for transient response improvement in constant on-time control. IEEE Trans. Power Electron. 33(3), 2680–2689 (2018)

    Article  Google Scholar 

  12. Meyer, E., Zhang, Z., Liu, Y.F.: An optimal control method for buck converters using a practical capacitor charge balance technique. IEEE IEEE Transactions on Power Electronics 23(4), 1802–1812 (2008)

    Article  Google Scholar 

  13. Kapat, S., Krein, P.: Improved time optimal control of a buck converter based on capacitor current. IEEE Trans. Power Electron. 27(3), 1444–1454 (2012)

    Article  Google Scholar 

  14. Feng, G., Meyer, E., Liu, Y.F.: A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters. IEEE Trans. Power Electron. 22(4), 1489–1498 (2007)

    Article  Google Scholar 

  15. Corradini, L., Costabeber, A., Mattavelli, P., Saggini, S.: Parameter-independent time-optimal digital control for point-of-load converters. IEEE Trans. Power Electron. 24(10), 2235–2248 (2009)

    Article  Google Scholar 

  16. Corradini, L., Babazadeh, A., Bjeleti, A., Maksimovic, D.: Current-limited time-optimal response in digitally controlled DC–DC converters. IEEE Trans. Power Electron. 25(11), 2869–2880 (2010)

    Article  Google Scholar 

  17. Meyer, E., Zhang, Z., Liu, Y.F.: Digital charge balance controller to improve the loading/unloading transient response of buck converters. IEEE Trans. Power Electron. 27(3), 1314–1326 (2012)

    Article  Google Scholar 

  18. Kim, D., Baek, J., Lee, J., Shin, J., Shin, J.-W.: Implementation of soft-switching auxiliary current control for faster load transient response. IEEE Access 9, 7092–7106 (2021)

    Article  Google Scholar 

  19. Kim, D., Hong, M., Baek, J., Lee, J., Shin, H., Shin, J.-W.: Soft-switching auxiliary current control for improving load transient response of buck converter. IEEE Trans. Power Electron. 36(3), 2488–2494 (2021)

    Article  Google Scholar 

  20. Kim, D., Shin, J.-W.: Dynamic response of buck converter with auxiliary current control: analysis and design of practical implementation. IEEE Trans. Power Electron. 36(12), 13917–13929 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grants 2021M1A2A2060313 and 2022R1C1C1010027, and Chung-Ang University Graduate Research Scholarship in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Won Shin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Baek, J., Shin, J. et al. Digital linear slope control method for improving the load transient response of a buck converter. J. Power Electron. 23, 400–409 (2023). https://doi.org/10.1007/s43236-023-00593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-023-00593-4

Keywords

Navigation