Skip to main content

Advertisement

Log in

Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

A demagnetization fault in the permanent magnet (PM) may occur when the temperature exceeds the limit temperature of the PM material due to the limited heat dissipation of the rotor in PM motors in the driving system of electric vehicles. In addition, PM thermal stress arises as a result of the unbalanced axial temperature distribution of the motor. When the thermal stress exceeds the yield strength of PM, micro-deformation of the PM structure happens and affects the performance and structural reliability of the motor. In this study, the rotor structure of an 18 kW PM motor is improved, and an eddy current ring structure of stainless steel is proposed. First, the effects of eddy current rings with axial lengths of 2, 5, and 10 mm on the eddy current losses of PM are compared. Second, a three-dimensional, steady-state temperature model of the motor is established to analyze the effects of the eddy current rings with different axial lengths on rotor temperature when the motor is running at different speeds. Results show that the eddy current ring structure with 2 mm axial length has the best effect on reducing rotor temperature. Lastly, the simulation results are verified using the test results of the 18 kW PM motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li, W., Li, L., Gao, H., et al.: Influence of direct-connected inverter with one power switch open circuit fault on electromagnetic field and temperature field of permanent magnet synchronous motor. IET Electr. Power Appl. 12(6), 815–825 (2018)

    Article  Google Scholar 

  2. Dai, Y., Ni, S., Xu, D., et al.: Disturbance-observer based prescribed-performance fuzzy sliding mode control for PMSM in electric vehicles. Eng. Appl. Artif. Intell. 104, 104361 (2021)

    Article  Google Scholar 

  3. Zhang, Q., Raherimihaja, H.J., Xu, G., et al.: Design and performance analysis of segmented three-phase IPMSM for EVs integrated battery charger. IEEE Trans. Industr. Electron. 68(10), 9114–9124 (2021)

    Article  Google Scholar 

  4. Qiu, Z., Chen, Y., Kang, Y., et al.: Investigation into periodic signal-based dithering modulations for suppression sideband vibro-acoustics in PMSM used by electric vehicles. IEEE Trans. Energy Convers. 36(3), 1787–1796 (2021)

    Article  Google Scholar 

  5. Miguel-Espinar, C., Heredero-Peris, D., Gross, G., et al.: Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives. IEEE Trans. Industr. Electron. 68(10), 9254–9264 (2021)

    Article  Google Scholar 

  6. Ai, Q., Wei, H., Li, T., et al.: Optimisation of reverse salient rotor for interior permanent magnet synchronous motor and experimental validation. IET Electric Power Appl. 15, 1–17 (2021)

    Article  Google Scholar 

  7. Bi, Y., Chai, F., Chen, L.: The study of cooling enhancement in axial flux permanent magnet motors for electric vehicles. IEEE Trans. Ind. Appl. 57(5), 4831–4839 (2021)

    Article  Google Scholar 

  8. Zhu, Z., Huang, Y., Dong, J., et al.: Rotor eddy current loss reduction with permeable retaining sleeve for permanent magnet synchronous machine. IEEE Trans. Energy Convers. 35(2), 1088–1097 (2020)

    Article  Google Scholar 

  9. Zhao, W., Pan, X., Ji, J., et al.: Analysis of PM eddy current loss in four-phase fault-tolerant flux-switching permanent-magnet machines by air-gap magnetic field modulation theory. IEEE Trans. Industr. Electron. 67(7), 5369–5378 (2020)

    Article  Google Scholar 

  10. Sun, X., Shi, Z., Lei, G., et al.: Analysis and design optimization of a permanent magnet synchronous motor for a campus patrol electric vehicle. IEEE Trans. Veh. Technol. 68(11), 10535–10544 (2019)

    Article  Google Scholar 

  11. Zheng, J., Zhao, W., Ji, J., et al.: Design to reduce rotor losses in fault-tolerant permanent-magnet machines. IEEE Trans. Industr. Electron. 65(11), 8476–8487 (2018)

    Article  Google Scholar 

  12. Jun, H.-W., Lee, J.-W., Yoon, G.-H., et al.: Optimal design of the PMSM retaining plate with 3-D barrier structure and eddy-current loss-reduction effect. IEEE Trans. Industr. Electron. 65(2), 1808–1818 (2018)

    Article  Google Scholar 

  13. Zhang, Y., McLoone, S., Cao, W., et al.: Power loss and thermal analysis of a MW high-speed permanent magnet synchronous machine. IEEE Trans. Energy Convers. 32(4), 1468–1478 (2017)

    Article  Google Scholar 

  14. Nair, S.S., Wang, J., Chin, R., et al.: Analytical prediction of 3-D magnet eddy current losses in surface mounted PM machines accounting slotting effect. IEEE Trans. Energy Convers. 32(2), 414–423 (2017)

    Article  Google Scholar 

  15. Jara, W., Lindh, P., Tapia, J.A., et al.: Rotor eddy-current losses reduction in an axial flux permanent-magnet machine. IEEE Trans. Industr. Electron. 63(8), 4729–4737 (2016)

    Google Scholar 

  16. Li, W., Cao, J., Zhang, X.: Electrothermal analysis of induction motor with compound cage rotor used for PHEV. IEEE Trans. Industr. Electron. 57(2), 660–668 (2010)

    Article  Google Scholar 

  17. Merdzan, M.: Performance analysis of high-speed electric machines supplied by PWM inverters based on the harmonic modeling method. Energies 14, 2606 (2021)

    Article  Google Scholar 

  18. Cheng, X., Wei, Xu., Guanghui, Du., et al.: Novel rotors with low eddy current loss for high speed permanent magnet machines. CES Trans. Electr. Mach. Syst. 3(2), 187–194 (2019)

    Article  Google Scholar 

  19. Li, W., Zhang, X., Cheng, S., et al.: Thermal optimization for a HSPMG used for distributed generation systems. IEEE Trans. Industr. Electron. 60(2), 474–482 (2013)

    Article  Google Scholar 

  20. Zhang, M., Luo, S., Liu, X., et al.: The eddy current loss segmentation model of permanent magnet for temperature analysis in high-speed permanent magnet motor. IET Power Electron. 14, 751–759 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities (2019JBZ101) and the High Power and High Efficiency Electric Drive Assembly System Development and Industrialization Project (TC210H02Q) in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weili Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, W., Xie, W. et al. Structure of a permanent magnet motor used for electric vehicles to suppress the eddy current effect. J. Power Electron. 22, 1576–1586 (2022). https://doi.org/10.1007/s43236-022-00447-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00447-5

Keywords

Navigation