Skip to main content
Log in

Model predictive current control method for PMSM drives based on an improved prediction model

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In motor drive systems based on model predictive control, a mathematic model of the motor is used to predict the future behavior of the system. However, the parameters in the motor model may not match their real values since these parameters may vary under different operation conditions. All parameter variations result in inaccurate predictions, and influence the steady-state control performance of the whole control system. In this paper, an improved model predictive control method is presented. Firstly, when parameter mismatches exist, the sources of the current prediction error are analyzed. It is revealed that current prediction error is directly affected by a prediction model with parameter mismatches and inaccurate one-step delay compensation. In particular, the influence form one-step delay compensation is discussed in this paper. Then a reaching-law-based sliding mode discrete observer is introduced to implement accurate one-step delay compensation and to observe all parameter variations. Finally, a predictive control method combined with sliding-mode discrete observation is presented to reduce parameter sensitivity. Simulation and experimental results show that the proposed method can increase the robustness of model predictive control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zhang, X., Li, Z.: Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor. IEEE Trans. Power Electron. 31(8), 5732–5745 (2016)

    Article  Google Scholar 

  2. Xie, W., Wang, X., Wang, F., Wei, Xu, Kennel, R.M., Gerling, D., Lorenz, R.D.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62(9), 5402–5410 (2015)

    Article  Google Scholar 

  3. Yan, Y., Wang, S., Xia, C., Wang, H., Shi, T.: Hybrid control set-model predictive control for field-oriented control of VSI-PMSM. IEEE Trans. Energy Convers. 31(4), 1622–1633 (2016)

    Article  Google Scholar 

  4. Wang, X., Sun, D.: Three-vector-based low-complexity model predictive direct power control strategy for doubly fed induction generators. IEEE Trans. Power Electron. 32(1), 773–782 (2017)

    Article  Google Scholar 

  5. Wang, G., Wang, Y., Xu, J., et al.: Weight-transducerless rollback mitigation adopting enhanced MPC with extended state observer for direct-drive elevators. IEEE Trans. Power Electron. 31(6), 4440–4451 (2016)

    Article  Google Scholar 

  6. Zhang, X., Hou, B.S., Mei, Y.: Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer. IEEE Trans. Power Electron. 32(5), 3818–3834 (2017)

    Article  Google Scholar 

  7. Zhou, Z., Xia, C., Yan, Y., Wang, Z., Shi, T.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Power Electron. 64(9), 6930–6939 (2017)

    Google Scholar 

  8. Karamanakos, P., Geyer, T., Kennel, R.: A computationally efficient model predictive control strategy for linear systems with integer inputs. IEEE Trans. Control Syst. Technol. 24(4), 1463–1471 (2016)

    Article  Google Scholar 

  9. Zhang, X., Wang, K.: Current prediction based zero sequence current suppression strategy for the semi-controlled open-winding PMSM generation system with a common DC bus. IEEE Trans. Industr. Electron. 65(8), 6066–6076 (2018)

    Article  Google Scholar 

  10. Xiaoguang, Z., Liang, Z., Yongchang, Z.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans. Power Electron. 34(2), 1645–1657 (2019)

    Article  Google Scholar 

  11. Zhang, X., He, Y.: Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor. IEEE Trans. Power Electron. 34(8), 7838–7851 (2019)

    Article  Google Scholar 

  12. Zhang, X., Hou, B., He, Y., Gao, D.: Model predictive torque control of surface mounted permanent magnet synchronous motor drives with voltage cost functions. J. Power Electron. 18(5), 1369–1379 (2018). https://doi.org/10.6113/JPE.2018.18.5.1369

    Article  Google Scholar 

  13. Zhang, X., Hou, B.S.: Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Trans. Power Electron. 33(3), 2368–2380 (2018)

    Article  Google Scholar 

  14. Geyer, T., Quevedo, D.E.: Performance of multistep finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 30(3), 1633–1644 (2015)

    Article  Google Scholar 

  15. Geyer, T., Quevedo, D.E.: Multistep finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 29(12), 6836–6846 (2014)

    Article  Google Scholar 

  16. Linder, A., Kennel, R.: (2005) Model predictive control for electrical drives. In Proc. IEEE 36th Power Electron. Specialists Conf., pp. 1793–1799.

  17. Stellato, B., Geyer, T., Goulart, P.J.: High-speed finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 32(5), 4007–4020 (2017)

    Article  Google Scholar 

  18. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100–3107 (2016)

    Article  Google Scholar 

  19. Kwak, S., Moon, U.-C., Park, J.-C.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178–6187 (2014)

    Article  Google Scholar 

  20. Bode, G.H., Loh, P.C., Newman, M.J., Holmes, D.G.: An improved robust predictive current regulation algorithm. IEEE Trans. Ind. Appl. 41(6), 1720–1733 (2005)

    Article  Google Scholar 

  21. Yang, M., Lang, X., Long, J., Xu, D.: A flux immunity robust predictive current control with incremental model and extended state observer for PMSM drive. IEEE Trans. Power Electron. 32(12), 9267–9279 (2017)

    Article  Google Scholar 

  22. Siami, M., Khaburi, D.A., Abbaszadeh, A., Rodriguez, J.: Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 63(6), 3458–3466 (2016)

    Article  Google Scholar 

  23. Siami, M., Khaburi, D.A., Rodríguez, J.: Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch. IEEE Trans. Power Electron. 32(9), 7160–7168 (2017)

    Article  Google Scholar 

  24. Xia, C., Wang, M., Song, Z., et al.: Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation. IEEE Trans. Ind. Infor. 8(3), 459–471 (2012)

    Article  Google Scholar 

  25. Lin, C.K., Yu, J.T., Lai, Y.S., Yu, H.C.: Improved model-free predictive current control for synchronous reluctance motor drives. IEEE Trans. Ind. Electron. 63(6), 3942–3953 (2016)

    Article  Google Scholar 

  26. Masadeh, M.A., Pillay, P.: Induction machine parameters determination and the impact of stator/rotor leakage split ratio on its performance. IEEE Trans. Ind. Electron. 67(7), 5291–5301 (2020)

    Article  Google Scholar 

  27. Kim, H.W., Kim, H.J., Choi, J.Y.: Multiparameter identification for SPMSMs using NLMS adaptive filters and extended sliding-mode observer. IET Electric. Power Appl. 14(4), 533–543 (2020)

    Article  Google Scholar 

  28. Che, H.S., Abdel-Khalik, A.S., Dordevic, O.: Parameter estimation of asymmetrical six-phase induction machines using modified standard tests. IEEE Trans. Ind. Electron. 64(8), 6075–6085 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, S., Tong, C. Model predictive current control method for PMSM drives based on an improved prediction model. J. Power Electron. 20, 1456–1466 (2020). https://doi.org/10.1007/s43236-020-00125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00125-4

Keywords

Navigation