Skip to main content

Advertisement

Log in

Three-vector-based model predictive current control with disturbance feedforward compensation

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

Finite control set model predictive current control (FCS-MPCC) has attracted the attention of a large number of researchers due to its intuitive idea, fast dynamic response and control objective flexibility. However, FCS-MPCC has a high steady-state current ripple. Three-vector-based model predictive current control (TV-MPCC) is an effective method to improve steady-state performance. However, it results in high motor parameter dependency. In this paper, the effect of motor parameters mismatch in FCS-MPCC has been analyzed. The control performance of FCS-MPCC is impacted when the motor parameters are mismatched. Then based on the disturbance estimation technique, a disturbance feedforward compensation based generalized proportional integral observer is used to reduce the disturbances and improves the robustness performance of the system. Experimental results show that the proposed method effectively improve the robustness of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kommuri, S.K., Defoort, M., Karimi, H.R., Veluvolu, K.C.: A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 63(12), 7671–7681 (2016)

    Article  Google Scholar 

  2. Mendoza-Mondragón, F., Hernández-Guzmán, V.M., Rodríguez-Reséndiz, J.: Robust speed control of permanent magnet synchronous motors using two-degrees-of-freedom control. IEEE Trans. Ind. Electron. 65(8), 6099–6108 (2018)

    Article  Google Scholar 

  3. Amezquita-Brooks, L., Liceaga-Castro, J., Liceaga-Castro, E.: Speed and position controllers using indirect field-oriented control: a classical control approach. IEEE Trans. Ind. Electron. 61(4), 1928–1943 (2014)

    Article  Google Scholar 

  4. Wang, Z., Chen, J., Cheng, M., Chau, K.T.: Field-oriented control and direct torque control for paralleled VSIs fed PMSM drives with variable switching frequencies. IEEE Trans. Power Electron. 31(3), 2417–2428 (2016)

    Article  Google Scholar 

  5. Wang, S., Li, C., Che, C., Xu, D.: Direct torque control for 2L-VSI PMSM using switching instant table. IEEE Trans. Ind. Electron. 65(12), 9410–9420 (2018)

    Article  Google Scholar 

  6. He, L., Cheng, S., Du, Y., Harley, R.G., Habetler, T.G.: Stator temperature estimation of direct-torque-controlled induction machines via active flux or torque injection. IEEE Trans. Power Electron. 30(2), 888–899 (2015)

    Article  Google Scholar 

  7. Ma, J., Song, W., Wang, X., Blaabjerg, F., Feng, X.: Low-complexity model predictive control of single-phase three-level rectifiers with unbalanced load. IEEE Trans. Power Electron. 33(10), 8936–8947 (2018)

    Article  Google Scholar 

  8. Nguyen, H.T., Jung, J.: Disturbance-rejection-based model predictive control: flexible-mode design with a modulator for three-phase inverters. IEEE Trans. Ind. Electron. 65(4), 2893–2903 (2018)

    Article  Google Scholar 

  9. Kakosimos, P., Abu-Rub, H.: Predictive speed control with short prediction horizon for permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 33(3), 2740–2750 (2018)

    Article  Google Scholar 

  10. Chen, Z., Qiu, J., Jin, M.: Adaptive finite-control-set model predictive current control for IPMSM drives with inductance variation. IET Electr. Power Appl. 11(5), 874–884 (2017)

    Article  Google Scholar 

  11. Zhou, Z., Xia, C., Yan, Y., Wang, Z., Shi, T.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Ind. Electron. 64(9), 6930–6939 (2017)

    Article  Google Scholar 

  12. Nguyen, H.T., Jung, J.: Finite control set model predictive control to guarantee stability and robustness for surface-mounted PM synchronous motors. IEEE Trans. Ind. Electron. 65(11), 8510–8519 (2018)

    Article  Google Scholar 

  13. Vafaie, M.H., Mirzaeian Dehkordi, B.: Approach for classifying direct PCs applied to AC motor drives. IET Electr. Power Appl. 13(3), 385–401 (2019)

    Article  Google Scholar 

  14. Bozorgi, A.M., Farasat, M., Jafarishiadeh, S.: Model predictive current control of surface-mounted permanent magnet synchronous motor with low torque and current ripple. IET Power Electron. 10(10), 1120–1128 (2017)

    Article  Google Scholar 

  15. Zhang, Y., Yang, H.: Two-vector-based model predictive torque control without weighting factors for induction motor drives. IEEE Trans. Power Electron. 31(2), 1381–1390 (2016)

    Article  Google Scholar 

  16. Li, H., Lin, M., Yin, M., Ai, J., Le, W.: Three-vector-based low-complexity model predictive direct power control strategy for PWM rectifier without voltage sensors. IEEE J. Emerg. Sel. Topics Power Electron. 7(1), 240–251 (2019)

    Article  Google Scholar 

  17. Ren, J., Ye, Y., Xu, G., Zhao, Q., Zhu, M.: Uncertainty-and-disturbance-estimator-based current control scheme for PMSM drives with a simple parameter tuning algorithm. IEEE Trans. Power Electron. 32(7), 5712–5722 (2017)

    Article  Google Scholar 

  18. Siami, M., Khaburi, D.A., Rodríguez, J.: Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch. IEEE Trans. Power Electron. 32(9), 7160–7168 (2017)

    Article  Google Scholar 

  19. Zhang, X., Tian, G., Huang, Y., Lu, Z.: Current compensation based sliding mode observer for sensorless control and online parameter estimation of PMSM. In: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 1–6, Hangzhou (2016)

  20. Yang, J., Chen, W., Li, S., Guo, L., Yan, Y.: Disturbance/uncertainty estimation and attenuation techniques in PMSM drives—a survey. IEEE Trans. Ind. Electron. 64(4), 3273–3285 (2017)

    Article  Google Scholar 

  21. Sariyildiz, E., Ohnishi, K.: Stability and robustness of disturbance-observer-based motion control systems. IEEE Trans. Ind. Electron. 62(1), 414–422 (2015)

    Article  Google Scholar 

  22. Xu, B., Wang, D., Zhang, Y., Shi, Z.: DOB-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Trans. Ind. Electron. 64(11), 8676–8685 (2017)

    Article  Google Scholar 

  23. Sayem, A.H.M., Cao, Z., Man, Z.: Model free ESO-based repetitive control for rejecting periodic and aperiodic disturbances. IEEE Trans. Ind. Electron. 64(4), 3433–3441 (2017)

    Article  Google Scholar 

  24. Pu, Z., Yuan, R., Yi, J., Tan, X.: A class of adaptive extended state observers for nonlinear disturbed systems. IEEE Trans. Ind. Electron. 62(9), 5858–5869 (2015)

    Article  Google Scholar 

  25. Yang, J., Cui, H., Li, S., Zolotas, A.: Optimized active disturbance rejection control for DC–DC buck converters with uncertainties using a reduced-order GPI observer. IEEE Trans. Circuits Syst. I Reg. Papers 65(2), 832–841 (2018)

    Article  Google Scholar 

  26. Wang, J., Wang, F., Zhang, Z., Li, S., Rodríguez, J.: Design and implementation of disturbance compensation-based enhanced robust finite control set predictive torque control for induction motor systems. IEEE Trans. Ind. Inform. 13(5), 2645–2656 (2017)

    Article  Google Scholar 

  27. Zhang, W., Tomizuka, M., Wu, P., et al.: A double disturbance observer design for compensation of unknown time delay in a wireless motion control system. IEEE Trans. Control Syst. Technol. 26(2), 675–683 (2018)

    Article  Google Scholar 

  28. Yan, L., Dou, M., Hua, Z., Zhang, H., Yang, J.: Robustness improvement of FCS-MPTC for induction machine drives using disturbance feedforward compensation technique. IEEE Trans. Power Electron. 34(3), 2874–2886 (2019)

    Article  Google Scholar 

  29. Chen, W., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods—an overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  30. Sira-Ramirez, H., Oliver-Salazar, M.A.: On the robust control of buck-converter DC-motor combinations. IEEE Trans. Power Electron. 28(8), 3912–3922 (2013)

    Article  Google Scholar 

  31. Xu, Y., Wang, J., Zhang, B., Zhou, Q.: Three-vector-based model predictive current control for permanent magnet synchronous motor. Trans. China Electrotech. Soc. 33(5), 980–988 (2018)

    Google Scholar 

  32. Khalil, H.: Nonlinear systems, 3rd edn, pp. 200–205. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, H., Ren, J. et al. Three-vector-based model predictive current control with disturbance feedforward compensation. J. Power Electron. 20, 687–697 (2020). https://doi.org/10.1007/s43236-020-00056-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00056-0

Keywords

Navigation