Skip to main content

Advertisement

Log in

Paleoenvironmental shifts across Cretaceous–Paleogene boundary: insights from multi-proxy chemo stratigraphy of the Mahadeo–Cherrapunji section, Meghalaya, India

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

This contribution presents chemical data on clays (SEM–EDS and trace elements) along with bulk organic carbon (δ13Corg) isotopes from the Mahadeo–Cherrapunji (MCR) section sediments to evaluate Deccan volcanism-induced paleoenvironmental perturbations across Cretaceous/Paleogene boundary (K/PgB). The assemblages of clay minerals (illite, chlorite, kaolinite, and smectite) in this section under study demonstrated that the climate during the late Maastrichtian–early Danian period was humid to arid/semi-arid. The rare earth element (REE) patterns normalized to chondrite reveal flat, heavy REE (HREE) patterns with negative europium (Eu) anomalies and enriched light REE (LREE) patterns. The MCR section suggests that the basin experienced intermittent oxic to anoxic depositional conditions, as indicated by the low to moderate values of Total Organic Carbon (TOC), V, and U, along with low Ni/Co and U/Th ratio values. The average δ13Corg value of MCR section clays is − 24.85‰. However, the pre-K/PgB gray calcareous shale layer (MC-12A) in biozone CF1 shows a δ13Corg value of − 28.91‰, which is significantly (~ 4‰) lower than the immediately lying below and above layers. The meager δ13Corg value (~ 4‰) during the K/PgB transition is attributed to the highly anoxic oceanic environment. Elevated levels of CO2 were attained through the release of warm greenhouse gasses resulting from Deccan volcanic activity. The findings of this investigation are supported by the shallow marine Therriaghat (Um-Sohryngkew River) section in Meghalaya, as well as other recognized K/PgB successions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets produced and examined in the present study can be obtained from the corresponding author upon reasonable request.

References

  • Ahmad, M., Srivastava, S., & Shrivastava, J. P. (2012). REE abundance in the clays associated with the intra-volcanic Bole horizons of the Eastern Deccan traps: Paleoenvironmental implication. Proceedings of the Indian National Science Academy, 78, 59–69.

    CAS  Google Scholar 

  • Akinula, A., Adekola, S. A., Swakamisa, O., Fadipe, O. A., & Akinyemi, S. A. (2010). Trace element characterization of Cretaceous Orange Basin hydrocarbon source rocks. Applied Geochemistry, 25, 1587–1595.

    Article  Google Scholar 

  • Alexandre, P., Kyser, K., Polito, P., & Thomas, D. (2005). Alteration mineralogy and stable isotope geochemistry of Paleoproterozoic basement-hosted unconformity-type uranium deposits in the Athabasca Basin, Canada. Economic Geology, 100, 1547–1563.

    Article  CAS  Google Scholar 

  • Armstrong-Altrin, J. S., Verma, S. P., Madhavaraju, J., Lee, Y. I., & Ramasamy, S. (2003). Geochemistry of Late Miocene Kudankulam Limestones, South India. International Geology Review, 45, 16–26.

    Article  Google Scholar 

  • Arndt, S., Hetzel, A., & Brumsack, H.-J. (2009). Evolution of organic matter degradation in Cretaceous black shales inferred from authigenic barite: A reaction–transport model. Geochimica et Cosmochimica Acta, 73, 2000–2022.

    Article  CAS  Google Scholar 

  • Barnes, C. E., & Cochran, J. K. (1990). Uranium removal in oceanic sediments and the oceanic U balance. Earth and Planetary Science Letters, 97, 94–101.

    Article  CAS  Google Scholar 

  • Bau, M., Koschinsky, A., Dulski, P., & Hein, J.R. (1996). Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater: Geochimica et Cosmochimica Acta, 60, 1709–1725.

  • Beaufort, D., Patrier, P., Laverret, E., Bruneton, P., & Mondy, J. (2005). Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers Uranium Field (Northern Territory, Australia). Economic Geology, 100, 515–536.

    Article  CAS  Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611–627.

    Article  CAS  Google Scholar 

  • Bhatia, M. R., & Taylor, S. R. (1981). Trace element geochemistry and sedimentary provinces: A study from the Tasman Geosyncline, Australia. Chemical Geology, 33, 115–126.

    Article  CAS  Google Scholar 

  • Birch, H. S., Coxall, H. K., Pearson, P. N., Kroon, D., & Schmidt, D. N. (2016). Partial collapse of the marine carbon pump after the Cretaceous Paleogene boundary. Geology, 44, 87–290. https://doi.org/10.1130/G37581.1

    Article  CAS  Google Scholar 

  • Bjorlykke, K. (1974). Geochemical and mineralogical influence of Ordovician Island arcs on epicontinental clastic sedimentation: a study of Lower Palaeozoic sedimentation in the Oslo region, Norway: Sedimentology, 21(2), 251–272.

  • Bralower, T. J., Cosmidis, J., Heaney, P., Kump, L. R., Morgan, J., Harper, D., Lyons, S. L., Freeman, K. H., Grice, K., Wendler, J., Zachos, J. C., Artemieva, N., Gulick, S., House, C., Jones, H. L., Lowery, C. L., Nims, C., Schaefer, B., Thomas, A., … Vajda, V. (2020). Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth and Planetary Science Letters, 548, 1–17. https://doi.org/10.1016/J.EPSL.2020.116476

    Article  Google Scholar 

  • Braun, J., Pagel, M., Muller, J., Bilong, P., Michard, A., & Guillet, B. (1990). Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781–795.

    Article  CAS  Google Scholar 

  • Brisman, K., Engel, M.H., Macko, S.A. (2001). Precambrian Research, 106, 59–77

  • Chenet, A.L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S.F.R., Subbarao, K.V. and Thordarson, T., 2009. Determination of rapid Deccan eruptions across the Cretaceous-tertiary boundary using Palaeomagnetic secular variation: 2. Constraints from Analysis of Eight New Sections and Synthesis for a 3500 m Thick Composite Section. Journal of Geophysical Research, 114, B06103. https://doi.org/10.1029/2008JB005644.

  • Chenet, A. L., Fluteau, F., Courtillot, V., Gerard, M., Quidelleur, X., Khadri, S. F. R., Subbarao, K. V., & Thordarson, T. (2008). Determination of rapid Deccan eruptions across the KTB using paleomagnetic secular variation: (I) Results from 1200 m thick section in the Mahabaleshwar escarpment. Journal of Geophysical Research, 113(B04101), 1–27.

    Google Scholar 

  • Chenet, A. L., Quidelleur, X., Fluteau, F., & Courtillot, V. (2007). 40K/40Ar dating of the main Deccan Large Igneous Province: Further evidence of KTB age and short duration. Earth Planetary Science Letters, 263, 1–15.

    Article  CAS  Google Scholar 

  • Clyde, W. C., Ramezani, J., Johnson, K. R., Bowring, S. A., & Jones, M. M. (2016). Direct high precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales. Earth and Planetary Science Letters, 452, 272–280. https://doi.org/10.1016/j.epsl.2016.07.041

    Article  CAS  Google Scholar 

  • Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian –Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochimica Acta, 58(22), 4955–4972.

    Article  CAS  Google Scholar 

  • Cullers, R. L., Barett, T., Carlson, R., & Robinson, B. (1987). Rare earth element and mineralogical changes in Holocene soil and stream sediments: A case study in the Wet Mountains Colorado, USA. Chemical Geology, 63, 275–297.

    Article  CAS  Google Scholar 

  • D’Hondt, S. (2005). Consequences of the Cretaceous/Paleogene mass extinction for marine ecosystems. Annual Review of Ecology, Evolution, and Systematics, 36, 295–317.

    Article  Google Scholar 

  • Dill, H. (1986). Metallogenesis of early Palaeozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany). Economic Geology, 81, 889–903.

    Article  CAS  Google Scholar 

  • Dill, H. G., Dohrmann, R., Kaufhold, S., & Weber, B. (2011). Clay mineralogy and chemistry of fine-grained sediments. Environment analysis around the K/P boundary at Sekarna/Kasserine Island, Tunisia. Neues Jahrbuch fur Mineralogie-Abhandlungen, 188(3), 285

  • Dypvik, H. (1984). Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays England. Geological Magazine, 121, 489–504.

    Article  CAS  Google Scholar 

  • Emerson, S. R., & Huested, S. S. (1991). Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Marine Chemistry, 34, 177–196.

    Article  CAS  Google Scholar 

  • Ernst, W. (1970). Geochemical facies analysis. Amsterdam

  • Fendley, I. M., Mittal, T., Sprain, C. J., Marvin-DiPasquale, M., Tobin, T. S., & Renne, P. R. (2019). Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth and Planetary Science Letters, 524, 115721. https://doi.org/10.1016/j.epsl.2019.115721

    Article  CAS  Google Scholar 

  • German, C. R., & Elderfield, H. (1990). Application of the Ce anomaly as a paleoredox indicator: The ground rules. Palaeoceanography, 5, 823–833.

    Article  Google Scholar 

  • Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad, V., Berner, Z., & Fleitmann, D. (2011). Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India. Earth and Planetary Science Letters, 310, 272–285.

    Article  CAS  Google Scholar 

  • Giron, M. M. T. (2013). Establishing geochemical constraints on mass accumulation rates across the Cretaceous-Paleogene boundary with extraterrestrial Helium-3 (Doctoral dissertation, Massachusetts Institute of Technology)

  • Giron, M., Sepúlveda, J., Mukhopadhyay, S., Alegret, L., Summons, R. E. (2012). Constraining mass accumulation rates across the Cretaceous‐Paleogene boundary clay layer using extraterrestrial helium‐3. American Geophysical Union Fall Meeting, Abstract PP31A‐ 1997.

  • Glasby, G. P., & Kunzendorf, H. (1996). Multiple factors in the origin of the Cretaceous/Tertiary boundary: The role of environmental stress and Deccan Trap volcanism. Geologische Rundschau, 85, 191–210.

    Article  CAS  Google Scholar 

  • Gulick, S. P., Bralower, T. J., Ormö, J., Hall, B., Grice, K., Schaefer, B., Expedition 364 Scientists. (2019). The first day of the Cenozoic. Proceedings of the National Academy of Sciences, 116(39), 19342–19351.

    Article  CAS  Google Scholar 

  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chemical Geology, 99(1–3), 65–82.

    Article  CAS  Google Scholar 

  • Hayes, J. M., Strauss, H., & Kaufman, A. J. (1999). The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161(1–3), 103–125. https://doi.org/10.1016/S0009-2541(99)00083-2

    Article  CAS  Google Scholar 

  • Hsü, K. J. (1980). Terrestrial catastrophe caused by cometary impact at the end of Cretaceous. Nature, 285, 201–203.

    Article  Google Scholar 

  • Hsü, K. J., & Mckenzie, J. A. (1985). A “Strangelove” ocean in the earliest Tertiary. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, 32, 487–492.

  • Hull, P. M., Bornemann, A., Penman, D. E., Henehan, M. J., Norris, R. D., Wilson, P. A., Blum, P., Alegret, L., Batenburg, S. J., Bown, P. R., & Bralower, T. J. (2020). On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367, 266–272. https://doi.org/10.1126/science.aay5055

    Article  CAS  Google Scholar 

  • Irizarry, K. M., Witts, J. D., Garb, M. P., Rashkova, A., Landman, N. H., & Patzkowsky, M. E. (2023). Faunal and stratigraphic analysis of the basal Cretaceous-Paleogene (K-Pg) boundary event deposits, Brazos River, Texas, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 610, 111334.

    Article  Google Scholar 

  • Jackson, M. L. (1985). Soil chemical analysis–advanced course, revised 2nd edition, 11th printing.

  • Jbari, H., & Slimani, H. (2021). Paleoenvironmental and paleoclimatic changes during the Late Cretaceous and Cretaceous-Paleogene (K/Pg) boundary transition in Tattofte, External Rif, northwestern Morocco: Implications from dinoflagellate cysts and palynofacies. Palaeoworld, 31(2), 334–357. https://doi.org/10.1016/j.palwor.2021.08.002

    Article  Google Scholar 

  • Jha, S. K., Shrivastava, J. P., & Bhairam, C. L. (2012). Clay mineralogical studies on Bijawars of the Sonrai Basin: Palaeoenvironmental implications and inferences on the uranium mineralization. Geological Society of India, 79, 117–134.

    Article  CAS  Google Scholar 

  • Jones, B. F., & Spencer, R. J. (1985). Clay minerals of the Great Salt Lake Basin. In: Programs and Abstract, 1985 International Clay Conference (pp. 327–336)

  • Jones, B., & Manning, A. C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Gardin, S., Bartolini, A., & Bajpai, S. (2008). Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India. Earth and Planetary Science Letters, 268, 293–311.

    Article  CAS  Google Scholar 

  • Keller, G., Khosala, S. C., Sharma, R., Khosala, A., Bajpai, S., & Adatte, T. (2009a). Early Danian planktic Inter-trappean beds at Jhilmili, Chhindwara District, Madhya Pradesh India. Journal of Foraminifera Research, 39(1), 40–55.

    Article  Google Scholar 

  • Keller, G., Adatte, T., Bajpai, S., Khosla, A., Sharma, R., Widdowson, M., Khosla, S. C., Mohabey, D. M., Gertsch, B., & Sahni, A. (2009b). Early Danian shallow marine deccan intertrappean at Jhilmili, Chhindwara, NE India: Implications for paleogeography. Earth and Planetary Science Letters, 282, 10–23.

    Article  CAS  Google Scholar 

  • Keller, G., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C., & Adatte, T. (2011). Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari basin. Journal of the Geological Society of India, 78, 399–428.

    Article  Google Scholar 

  • Keller, G., Mateo, P., Monkenbusch, J., Thibault, N., Punekar, J., Spangenberg, J. E., Abramovichf, S., Ashckenazi-Polivodag, S., Schoene, B., Eddy, M. P., Samperton, K. M., Khadri, S. F. R., & Adatte, T. (2020). Mercury linked to Deccan traps volcanism, climate change and the end-Cretaceous mass extinction. Global and Planetary Change, 194, 103312.

    Article  Google Scholar 

  • Kelley, W. P. (1945). Calculating formulas for fine grained minerals on the basis of chemical analysis. American Mineralogist, 30, 1–26.

    CAS  Google Scholar 

  • Klinkhammer, G. P., & Palmer, M. R. (1991). Uranium in the oceans: Where it goes and why author links open overlay panel. Geochimica et Cosmochimica Acta, 55, 1799–1806.

    Article  CAS  Google Scholar 

  • Kump, L. R., & Arthur, M. A. (1999). Interpreting carbon-isotope excursions: Carbonates and organic matter. Chemical Geology, 161(1–3), 181–198.

    Article  CAS  Google Scholar 

  • Lewan, M. D., & Maynard, J. B. (1982). Factors controlling enrichment of vanadium and nickel in the bitumen of organic Sedimentary rocks. Geochimica et Cosmochimica Acta, 46, 2547–2560.

    Article  CAS  Google Scholar 

  • Li, Z., Hong, H., Liao, L., & He, H. (2023). X-ray Diffraction and Trace Element Analyses of K/Pg Boundary Samples Collected from Agost and Caravaca Spain. Crystals, 13, 670. https://doi.org/10.3390/cryst13040670

    Article  CAS  Google Scholar 

  • Liu, Y.-G., Miah, M. R. U., & Schmitt, R. A. (1988). Cerium: A chemical tracer for paleooceanic redox conditions. Geochimica et Cosmochimica Acta, 52, 1361–1371.

    Article  CAS  Google Scholar 

  • Lowery, C. M., Bown, P. R., Fraass, A. J., & Hull, P. M. (2020). Ecological response of plankton to environmental change: thresholds for extinction Christopher. Annual Review of Earth and Planetary Sciences, 48, 16.1-16.27. https://doi.org/10.1146/annurev-earth-081619-052818

    Article  CAS  Google Scholar 

  • Lowery, C. M., Bralower, T. J., Owens, J. D., Rodríguez-Tovar, F. J., Jones, H., Smit, J., & Zylberman, W. (2018). Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558(7709), 288–291.

    Article  CAS  Google Scholar 

  • Lyons, S. L., Karp, A. T., Bralower, T., Grice, K., Schaefer, B., Gulick, S. P. S., Morgan, J. V., & Freeman, K. H. (2020). Organic matter from the Chicxulub crater exacerbated the KPg impact winter. Proceedings of the National Academy of Sciences, USA, 117, 25327–25334. https://doi.org/10.1073/pnas.2004596117

    Article  CAS  Google Scholar 

  • Madhavaraju, J., & Gonz´alez-Le´on, C.M. (2012). Depositional conditions and source of rare earth elements in carbonate strata of the Aptian-Albian Mural Formation, Pitaycachi section, northeastern Sonora, Mexico. Revista Mexicana de Ciencias Geológicas, 29, 478–491

  • Manabe, S., & Stouffer, R. J. (1993). Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system. Nature, 364, 215–218. https://doi.org/10.1038/364215a0

    Article  CAS  Google Scholar 

  • Marsh, J. S. (1991). REE fractionation and Ce anomalies in weathered Karoo dolerite. Chemical Geology, 90, 189–194.

    Article  CAS  Google Scholar 

  • Martinez-Ruiz, F., & Ortega-Huertas, P. I. (1999). Positive Eu anomaly development during diagenesis of K/T boundary ejecta layer in Argos section (SE Spain): Implications for trace element remobilization. Terra Nova, 11, 290–296.

    Article  Google Scholar 

  • McLennan, S. M., Taylor, S.R., & Kröne, A. (1983). Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups. Precambrian Research, 22(1), 93–124

  • McLennan, S. M., Taylor, S. R., & Hemming, S. R. (2006). Composition, differentiation, and evolution of continental crust: Constrains from sedimentary rocks and heat flow. In M. Brown & T. Rushmer (Eds.), Evolution and differentiation of the continental crust (pp. 92–134). Cambridge University Press.

    Google Scholar 

  • Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R., & McKee, M. L. (2019). No evidence for a large atmospheric CO2 spike across the Cretaceous-Paleogene boundary. Geophysical Research Letters, 46, 3462–3472. https://doi.org/10.1029/2018GL081215

    Article  CAS  Google Scholar 

  • Mongenot, T., Tribovillard, N. P., Desprairies, A., Lallier-Vergès, E., & Laggoun-Defarge, F. (1996). Trace elements as palaeoenvironmental markers in strongly mature hydrocarbon source rocks: The Cretaceous La Luna Formation of Venezuela. Sedimentary Geology, 103(1–2), 23–37.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, S. K. (2008). Planktonic foraminiferal succession in late Cretaceous to early Paleocene strata in Meghalaya, India. Lethia, 41, 71–84.

    Article  Google Scholar 

  • Mukhopadhyay, S. K. (2009). Convener’s report for 2008 on the progress of work in the IGCP Project 507, on 'Paleoclimate in Asia during the Cretaceous: Their variations, causes, and biotic and environmental responses’. IGCP India Newsletter, 29, 11–13.

    Google Scholar 

  • Mukhopadhyay, S.K. (2016). Planktonic foraminiferal zonation and sea-level changes in the upper Maastrichtian-middle Danian successions of Meghalaya, India. Stratigraphy, 13(4), text-figures 1–7, tables 1–6, appendix 1, 245–276.

  • Muller-Karger, F. E., Varela, R., Thunell, R., Luerssen, R., Hu, C., & Walsh, J. J. (2005). The importance of continental margins in the global carbon cycle. Geophysical Research Letters, 32, L01602.

    Article  Google Scholar 

  • Murray, R.W., Ten Brink, M.R.B., Gerlach, D.C., Russ III, G.P., & Jones, D.L. (1991). Rare earth, major and trace elements in chert from the Franciscan complex and Monterey Group, California: Assessing REE sources to fine grained marine sediments: Geochimica et Cosmochimica Acta, 55, 1875–1895.

  • Nagappa, Y. (1959). Foraminiferal biostratigraphy of the Cretaceous-Eocene succession in the India-Pakistan-Burma region. Micropalaeontology, 5, 145–192.

    Article  Google Scholar 

  • Nath, B. N., Bau, M., Ramlingeswara-Rao, B., & Rao, Ch. M. (1997). Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochimica et Cosmochimica Acta, 61, 2375–2388.

    Article  CAS  Google Scholar 

  • Newman, A. C. D., & Brown, G. (1987). The chemical constitution of clays. Monograph, Mineralogical Society, 6, 1–128.

    CAS  Google Scholar 

  • Ortega-Huertas, M., Palomo, I., Martinez-Ruiz, F., & Gonzalez, I. (1998). Geological factors controlling clay mineral patterns across the Cretaceous-Tertiary boundary in Mediterranean and Atlantic sections. Clay Minerals, 33, 483–500.

    Article  Google Scholar 

  • Pal, S., Jayananda, M., & Shrivastava, J. P. (2022). K-Pg boundary transition and attendant degeneration of clay lattices in late Maastrichtian-early Danian shelf facies of the Langpar formation, Meghalaya India. Geosystems and Geoenvironment, 1(3), 100050.

    Article  Google Scholar 

  • Pal, S., Shrivastava, J. P., & Kalpana, M. S. (2023a). Fire activity across Cretaceous/Paleogene transition: Evidence from pyrogenic biomarkers preserved in the Mahadeo-Cherrapunji section, Meghalaya India. Geobiology, 21(5), 612–628.

    Article  CAS  Google Scholar 

  • Pal, S., Singamshetty, K. M., Shrivastava, J. P., Mukhopadhyay, S. K., & Hamilton, S. (2023b). Evidence of biotic recovery through the Cretaceous/Palaeogene transition from the Mahadeo-Cherrapunji succession in the Meghalaya shelf India. Palaeobiodiversity and Palaeoenvironments, 103(2), 221–247.

    Article  Google Scholar 

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015a). Polycyclic Aromatic Hydrocarbon compound excursions and K/Pg transition in the late Cretaceous-early Paleogene succession of the Um-Sohryngkew River section, Meghalaya. Current Science, 109, 1140–1150.

    Article  CAS  Google Scholar 

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015b). Physils and organic matter-base palaeoenvironmental records of the K/Pg boundary transition from the late Cretaceous-early Palaeogene succession of the Um Sohryngkew river section of Meghalaya, India. Chemie Der Erde-Geochemistry, 75, 445–463.

    Article  CAS  Google Scholar 

  • Pal, S., Shrivastava, J. P., & Mukhopadhyay, S. K. (2015c). Mineral chemistry of clays associated with the late Cretaceous-early Palaeogene succession of the Um Sohryngkew river section of Meghalaya: Palaeoenvironmental inferences and K/Pg transition. Journal of Geological Society of India, 86, 631–647.

    Article  CAS  Google Scholar 

  • Pal, S., Srivastava, S., & Shrivastava, J. P. (2013). Mineral chemistry of clays associated with the Jhilmili Intertrappean Bed in the Eastern Deccan volcanic province: Palaeoenvironmental Inferences and KTB transition. Journal of Geological Society of India, 82, 38–52.

    Article  CAS  Google Scholar 

  • Pandey, J. (1990). Cretaceous/Tertiary boundary, iridium anomaly and foraminifer breaks in the Um Sohryngkew River section. Current Science, 59, 570–575.

    Google Scholar 

  • Patterson, J. H., Ramsden, A. R., Dale, L. S., & Fardy, J. J. (1986). Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek Qld. Aust. Chemical Geology, 55, 1–16.

    Article  CAS  Google Scholar 

  • Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., & Jiang, S. Y. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225, 218–229.

    Article  CAS  Google Scholar 

  • Polito, P. A., Kyser, T. K., Thomas, D., Marlatt, J., & Drever, G. (2005). Re-evaluation of the petrogenesis of the Proterozoic Jabiluka unconformity-related uranium deposit, Northern Territory, Australia. Mineral Deposit, 40, 238–257.

    Article  Google Scholar 

  • Premovic, P. I., Todorovi´c, B. Ž., & Stankovi´c, M.N. (2008a). Cretaceous-Paleogene boundary (KPB) Fish Clay at Højerup (Stevns Klint, Denmark): Ni, Co, and Zn of the black marl. Geologica Acta, 6, 369–382

  • Premovic´, P.I., Stankovic´, M.N., Pavlovic´, & M.S., Ðordevic´, M.G. (2008b) Cretaceous-Paleogene boundary Fish Clay at Højerup (Stevns Klint, Denmark): Zn, Pb and REE in kerogen. Journal of the Serbian Chemical Society 73, 453–461

  • Ransom, B., & Helgeson, H. C. (1993). Compositional end member and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions. Clays & Clay Minerals, 41, 537–550.

    Article  CAS  Google Scholar 

  • Rau, G. H., Chavez, F. P., & Friederich, G. E. (2001). Plankton 13C/12C variations in Monterey Bay, California: Evidence of non-diffusive inorganic carbon uptake by phytoplankton in an upwelling environment. Deep Sea Research Part I: Oceanographic Research Papers, 48(1), 79–94. https://doi.org/10.1016/S0967-0637(00)00039-X

    Article  CAS  Google Scholar 

  • Renne, P. R., Deino, A. L., Hilgen, F. J., Kuiper, K. F., Mark, D. F., Mitchell, W. S., Morgan, L. E., Mundil, R., & Smit, J. (2013). Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339(6120), 684–687. https://doi.org/10.1126/science.1230492

    Article  CAS  Google Scholar 

  • Rodríguez-Tovar, F. J., Miguez-Salas, O., & Dorador, J. (2020). Image processing techniques to improve characterization of composite ichnofabrics. Ichnos, 27, 258–267.

    Article  Google Scholar 

  • Ross, C. S., & Hendricks, S. B. (1945). Minerals of the montmorillonite group. U.S. Geological Survey Professional Paper, 205, 23–47.

    Google Scholar 

  • Roy, S., Ghosh, S., & Sanyal, P. (2022). Carbon reservoir perturbations induced by Deccan volcanism: Stable isotope and biomolecular perspectives from shallow marine environment in Eastern India. Geobiology, 20(1), 22–40.

    Article  CAS  Google Scholar 

  • Royer, D. L., Berner, R. A., Neil, J. T., & Beerling, D. J. (2004). CO2 as a primary driver of Phanerozoic climate. GSA Today. https://doi.org/10.1130/1052-5173(2004)014

    Article  Google Scholar 

  • Salil, M. S., Pattanayak, S. K., & Shrivastava, J. P. (1996). Composition of smectites in the Lameta Sediments of central India: Implications for the commencement of Deccan volcanism. Journal of the Geological Society of India, 47, 555–560.

    CAS  Google Scholar 

  • Salil, M. S., Shrivastava, J. P., & Pattanayak, S. K. (1997). Similarities in the mineralogical and geochemical attributes of detrial clays of Maastrichtian Lameta Beds and weathered Deccan basalt, Central India. Chemical Geology, 136, 25–32.

    Article  CAS  Google Scholar 

  • Sarkar, G., Corfu, F., Paul, D. K., McNaughton, N. J., Gupta, S. N., & Bishui, P. K. (1993). Early Archaean crust in Bastar Craton, central India - a geochemical and isotopic study. Precambrian Research, 62, 127–137.

    Article  CAS  Google Scholar 

  • Satyanarayana, M., Balaram, V., Sawant, S. S., Subramanyam, K. S. V., Krishna, G. V., Dasaram, B., & Manikyamba, C. (2018). Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry. Atomic Spectroscopy, 39(1), 1–15.

    Article  Google Scholar 

  • Schaefer, B., Grice, K., Coolen, M. J. L., Summons, R. E., Cui, X., Bauersachs, T., Schwark, L., Böttcher, M. E., Bralower, T. J., Lyons, S. L., Freeman, K. H., Cockell, C. S., Gulick, S. P. S., Morgan, J. V., Whalen, M. T., Lowery, C. M., & Vajda, V. (2020). Microbial life in the nascent Chicxulub crater. Geology, 48, 328–332.

    Article  CAS  Google Scholar 

  • Schoene, B., Eddy, M. P., Samperton, K. M., Keller, C. B., Keller, G., Adatte, T., & Khadri, S. F. R. (2019). U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363, 862–866.

    Article  CAS  Google Scholar 

  • Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F. R., & Gertsch, B. (2015). U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347(6218), 182–184.

    Article  CAS  Google Scholar 

  • Sepúlveda, J., Alegret, L., Thomas, E., Haddad, E., Cao, C., & Summons, R. E. (2019). Stable isotope constraints on marine productivity across the Cretaceous-Paleogene mass extinction. Palaeoceanography Paleoclimatology, 34, 1195–1217. https://doi.org/10.1029/2018PA003442

    Article  Google Scholar 

  • Shaw, T. J., Geiskes, J. M., & Jahnke, R. A. (1990). Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochimica et Cosmochimica Acta, 54, 1233–1246.

    Article  CAS  Google Scholar 

  • Shields, G., & Stille, P. (2001). Diagenetic constraints on the use of cerium anomalies as palaeo seawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1), 29–48.

    Article  CAS  Google Scholar 

  • Shrivastava, J. P., & Ahmad, M. (2005). Compositional studies on illite-smectite from iridium enriched and other infra (Lametas)/inter-trappean sediments from Deccan Traps. Indian Journal of Geochemistry, 20, 121–142.

    CAS  Google Scholar 

  • Shrivastava, J. P., & Ahmad, M. (2008). Trace element compositions of iridium enriched illite-smectite assemblages from a K/Pg boundary section in the Anjar area of the Deccan volcanic province: Paleoenvironmental implications. Cretaceous Research, 29, 592–602.

    Article  Google Scholar 

  • Shrivastava, J. P., Mansoor, A., & Srivastava, S. (2012). Microstructures and compositional variation in the intravolcanic bole clays from the eastern Deccan Volcanic Province: Paleoenvironmental Implications and Duration of Volcanism. Journal of the Geological Society of India, 80, 177–188.

    Article  Google Scholar 

  • Shrivastava, J. P., Mukhopadhyay, S. K., & Pal, S. (2013). Chemico-mineralogical attributes of clays from the late Cretaceous early Paleogene succession of the Um Sohryngkew river section of Meghalaya, India: Paleoenvironmental inferences and the K/Pg boundary. Cretaceous Research, 45, 247–257.

    Article  Google Scholar 

  • Smit, J., & Kate, W. T. (1982). Trace-element patterns at the Cretaceous-Tertiary boundary—consequences of a large impact. Cretaceous Research, 3, 307–332.

    Article  CAS  Google Scholar 

  • Somayajulu, B. L. K., Yadav, D. N., & Sarin, M. M. (1994). Recent sedimentary records from the Arabian Sea. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 103, 315–327.

    CAS  Google Scholar 

  • Sosa-Montes de Oca, C., Rodríguez-Tovar, F. J., & Martínez-Ruiz, F. (2017). Paolo Monaco Paleoenvironmental conditions across the Cretaceous Paleogene transition at the Apennines sections (Italy): An integrated geochemical and ichnological approach. Cretaceous Research, 71, 1–13.

    Article  Google Scholar 

  • Sprain, C. J., Renne, P. R., Vanderkluysen, L., Pande, K., Self, S., & Mittal, T. (2019). The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363, 866–870.

    Article  CAS  Google Scholar 

  • Sprain, C. J., Renne, P. R., Wilson, G. P., & Clemens, W. A. (2015). High-resolution chronostratigraphic of the terrestrial Cretaceous-Paleogene transition and recovery interval in the Hell Creek region, Montana. Geological Society of America Bulletin, 127, 393–409.

    Article  Google Scholar 

  • Stocker, T. F., & Schmittner, A. (1997). Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature, 388(6645), 862–865.

    Article  CAS  Google Scholar 

  • Stüben, D., Kramar, U., Harting, M., Stinnesbeck, W., & Keller, G. (2005). High-resolution geochemical record of Cretaceous-Tertiary boundary sections in Mexico: New constraints on the K/T and Chicxulub events. Geochimica et Cosmochimica Acta, 69(10), 2559–2579.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution.

  • Towe, K. M. (1983). Precambrian atmospheric oxygen and banded iron formations: A delayed ocean model. Precambrian Research, 20, 161–170.

    Article  CAS  Google Scholar 

  • Wang, Y. L., Liu, Y. G., & Schmitt, R. A. (1986). Rare earth element geochemistry of south Atlantic deep sediments, Ce anomaly change at ~54 My. Geochimica et Cosmochimica Acta, 50, 1337–1355.

    Article  CAS  Google Scholar 

  • Wang, S., Zhao, W., Zou, C., Dong, D., Wang, Y., Li, X., & Guan, Q. (2015). Organic carbon and stable CO isotopic study of the Lower Silurian Longmaxi Formation black shales in Sichuan Basin, SW China: Paleoenvironmental and shale gas implications. Energy Exploration & Exploitation, 33(3), 439–457.

    Article  CAS  Google Scholar 

  • Weaver, C.E., & Pollard, L.D., 1973. The chemistry of clay minerals, Elsevier, pp. 213.

  • Wilf, P., Johnson, K. R., & Huber, B. T. (2003). Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 599–604. https://doi.org/10.1073/pnas.0234701100

    Article  CAS  Google Scholar 

  • Yan, D., Zhou, M., Wei, G., Gao, J., Liu, S., Xu, P., & Shi, X. (2008). The Pengguan tectonic dome of Longmen Mountains, Sichuan Province: Mesozoic denudation of a Neoproterozoic magmatic arc-basin system. Science in China Series D: Earth Sciences, 51(11), 1545–1559.

    Article  CAS  Google Scholar 

  • Yan, J. P., Cai, J. G., Zhao, M. H., & Zheng, D. S. (2009). Advances in the study of source rock evaluation by geophysical logging and its significance in resource assessment. Progress in Geophysics (in Chinese), 24(1), 270–279.

    Google Scholar 

  • Zhang, L., Wang, C., Wignall, P. B., Kluge, T., Wan, X., Wang, Q., & Gao, Y. (2018). Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology, 46(3), 271–274.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SP expresses gratitude for the financial assistance received from the UGC-Dr. D.S. Kothari Post-Doctoral Fellowship (Grant: F.4-2120 06 (BSR)/ES/18-19/0 037). MJ acknowledges IoE, University of Hyderabad, as well as the Department of Science and Technology, Government of India, through the FIST grant (SR/FST/ESI-146/2016(C)). In order to conduct fieldwork, SP and JPS are grateful for financial support [Project Grant No. 24(0342)/16/EMR-II] from the Council of Scientific and Industrial Research, New Delhi. We are thankful to the reviewers and handling editor for offering valuable comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sucharita Pal—wrote the main manuscript text, prepared figures, tables M. Jayananda—conceptualize the research, reviewed the manuscript text Devleena M. Tiwari—reviewed the manuscript text and gave valuable inputs J.P. Shrivastava—conceptualize the research, reviewed the manuscript text M. Satyanarayanan—analytical help A.S. Maurya—analytical help J.P. Gautam—Analytical help

Corresponding author

Correspondence to M. Jayananda.

Ethics declarations

Conflict of interest

The authors state that they do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, S., Jayananda, M., Tiwari, D.M. et al. Paleoenvironmental shifts across Cretaceous–Paleogene boundary: insights from multi-proxy chemo stratigraphy of the Mahadeo–Cherrapunji section, Meghalaya, India. J. Sediment. Environ. (2024). https://doi.org/10.1007/s43217-024-00171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43217-024-00171-z

Keywords

Navigation