Skip to main content
Log in

Dynamics in a tropical meso-tidal river: Great Kwa River, southeastern Nigeria (Gulf of Guinea)

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Tidal and fluvial forcings influence the distribution of sediments within the Great Kwa River, a meso-tidal channel located within the southeastern coast of Nigeria. This study was carried out to outline possible signatures for recognizing and interpreting the sedimentary processes of its ancient analogs in the rock record. Sediment samples were collected within a 10 km study segment of the lower reaches of the channel using a Van-Veen grab sampler. Flow measurements made over spring, mean, and neap tidal phases confirmed the tidal nature of the channel. Depth measurements within the channel revealed its bathymetric configuration. Cross-laminated ripples were inferred as the major bedforms within the channel. Three sedimentary facies associations (A, B, and C) were delineated in the Great Kwa River. Fine-grained, moderately sorted, near symmetric, positive skewed, mesokurtic sands, and bi-directional cross-laminated ripples are common to all three Facies. However, Facies A is distinguished by the predominance of ebb-dominated ripples and poorly sorted, strongly positive skewed sands. The predominance of near-symmetric ripples, the absence of medium sand, and the presence of moderately sorted and very platykurtic sands distinguishes Facies B. At the same time, flood-dominated ripples, coarse-grained, moderately well to very well-sorted and extremely leptokurtic sands distinguish Facies C. This study provides a comprehensive understanding of the influence of varying sediment facies and channel configuration on the dynamics of a meso-tidal river. Thus, providing the basis for identifying and interpreting sedimentary processes of ancient analogs of the Great Kwa River in the rock record.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used for the current study are available from the corresponding author on reasonable request.

References

  • Allen, G. P. (1969). Relationship between grain size parameter distribution and current patterns in the Gironde Estuary (France). Journal of Sedimentary Petrology, 41(I), 74–88.

    Google Scholar 

  • Antia, V. I., Emeka, C. N., Ntekim, E. E. U., & Amah, E. A. (2012). Grain size distribution and flow measurements in Qua-Iboe River estuary. European Journal of Scientific Resesarch, 67(2), 223–239.

    Google Scholar 

  • Arun, T. J., Limisha, A. T., Prasad, K. R., Aneesh, T. D., Sreeraj, M. K., & Srinivas, R. (2019). Studies on the textural characteristics of sediments from Vaigai River basin, Tamil Nadu, Southern India. International Journal of Scientific and Technology Research, 8(11), 2671–2683.

    Google Scholar 

  • Awasthi, A. K. (1970). Skewness as an environmental indicator in the Solani River System, Roorkee (India). Sedimentary Geology, 4, 177–183.

    Article  Google Scholar 

  • Baiyegunhi, C., Liu, K., & Gwavava, O. (2017). Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geoscience, 9, 554–576.

    Google Scholar 

  • Bartholdy, J. (2005). Flow and grain size control of depth-independent simple subaqueous dunes. Journal of Geophysical Research, 110, 1–12. https://doi.org/10.1029/2004JF000183

    Article  Google Scholar 

  • Bartholomä, A., Ernstsen, V. B., Flemming, B. W., & Bartholdy, J. (2004). Bedform dynamics and net sediment transport paths over a flood-ebb tidal cycle in the Grådyb channel (Denmark), determined by high-resolution multi-beam echosounding. Geografisk Tidsskrift-Danish Journal of Geography, 104(1), 45–55. https://doi.org/10.1080/00167223.2004.10649503

    Article  Google Scholar 

  • Biggs, R. B., & Howell, B. A. (1984). The estuary as a sediment trap: alternate approaches to estimating its filtering efficiency. In V. S. Kennedy (Ed.), The estuary as a filter (pp. 107–129). New York Academic Press.

  • Boyd, R., Dalrymple, R. W., & Zaitlin, B. A. (2006). Estuarine and incised-valley facies models. In Special Publication - Society for Sedimentary Geology (Vol. 84, Issue 84). https://doi.org/10.2110/pec.06.84.0171

  • Boyd, R., & Honig, C. (1992). Estuarine sedimentation on the eastern shore of Nova Scotia. Journal of Sedimentary Petrology, 62(4), 569–583.

    Google Scholar 

  • Bridge, J. S. (2003). Rivers and floodplains: forms, processes, and sedimentary record. Wiley.

  • Chakrabarti, A. K. (1971). Studies on sediment movement at the entrance of a tidal river. Sedimentary Geology, 6, 111–127. https://doi.org/10.1007/978-3-642-41714-6_201227

    Article  Google Scholar 

  • Chin, J. L., Woodrow, D. L., McGann, M., Wong, F. L., Fregoso, T., & Jaffe, B. E. (2010). Estuarine sedimentation, sediment character, and foraminiferal distribution in central San Francisco Bay, California. http://search.proquest.com/docview/907188084?accountid=27991%5Cn, http://link.periodicos.capes.gov.br/sfxlcl41?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:book&genre=report&sid=ProQ:Aquatic+Science+&+Fisheries+Abstracts+(ASFA)+2:+Ocean+Technology. Accessed 3 Apr 2020

  • Daidu, F. (2013). Classifications, sedimentary features and facies associations of tidal flats. Journal of Palaeogeography, 2(1), 66–80. https://doi.org/10.3724/SP.J.1261.2013.00018

    Article  Google Scholar 

  • Dalrymple, R. W. (2010). Tidal depositional systems. In N. P. James & R. W. Dalrymple (Eds.), Facies models 4 (pp. 201–232). Geological Association of Canada.

  • Dalrymple, R. W., & Choi, K. (2007). Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews, 81(3–4), 135–174. https://doi.org/10.1016/j.earscirev.2006.10.002

    Article  Google Scholar 

  • Dalrymple, R. W., Knight, R. J., Zaitlin, B. A., & Middleton, G. V. (1990). Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay—Salmon River Estuary (Bay of Fundy). Sedimentology, 37(4), 577–612. https://doi.org/10.1111/j.1365-3091.1990.tb00624.x

    Article  Google Scholar 

  • Dalrymple, R. W., Mackay, D. A., Ichaso, A. A., & Choi, K. S. (2012). Processes, morphodynamics, and facies of tide-dominated estuaries. Principles of tidal sedimentology (pp. 79–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0123-6

  • Dalrymple, R. W., Zaitlin, B. A., & Boyd, R. (1992). Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62(6), 1130–1146. https://doi.org/10.1306/D4267A69-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Daniell, K. A., Plant, R., Pilbeam, V., Sabinot, C., Paget, N., Astles, K., & White, I. (2020). Evolutions in estuary governance? Reflections and lessons from Australia, France and New Caledonia. Marine Policy, 112, 103704–103707.

    Article  Google Scholar 

  • Davies-Vollum, K. S. (2006). Using grain size analysis as the basis for a research project in an undergraduate sedimentology course. Journal of Geoscience Education, 54(1), 10–17.

    Article  Google Scholar 

  • Davis, R. A., Jr., & Dalrymple, R. W. (Eds.). (2012). Principles of tidal sedimentology. Springer Science + Business Media LLC. https://doi.org/10.1007/978-94-007-0123-6

  • Demarest, J. M., II., & Kraft, J. C. (1987). Stratigraphic record of Quaternary sea levels: implications for more ancient strata. In D. Numedal, O. H. Pilkey, & J. D. Howard (Eds.), Sea level fluctuations and coastal evolution (Vol. 41, pp. 223–239). SEPM special publication.

  • Emeka, C. N., & Emeka, V. I. (2015). Hydro-physico-chemistry of the Cross River estuary, south-east Nigeria. 3rd International Conference on Oceanography, 5(2), 9910.

  • Emeka, C. N., Antia, V. I., Ukpong, A. J., Amah, E. A., & Ntekim, E. E. U. (2010). A study on the sedimentology of tidal rivers: Calabar and Great Kwa, S. E. Nigeria. European Journal of Scientific Research, 47(3), 370–386.

    Google Scholar 

  • Emeka, C. N., Emeka, V. I., Agi-Odey, E. K., Ambo, A. A., & Edem, G. O. (2023a). Wet season physicochemical characteristics of the Cross River estuary, southeast Nigeria. Global Journal of Geological Sciences, 21(2), 149–166.

    Google Scholar 

  • Emeka, C. N., Emeka, V. I., Akpan, E. B., & Essien, N. U. (2023b). Dry season physicochemical characteristics of a tropical meso-tidal estuary: Cross River estuary, southeast Nigeria. Global Journal of Geological Sciences, 21(2), 183–200.

    Google Scholar 

  • Emeka, V. I., Emeka, C. N., Ebong, E. D., Ojong, R. A., & Chidozie, C. P. (2023c). Tidal dynamics and physicochemical parameters in a tropical estuary: Qua-Iboe River estuary, Southeast coast of Nigeria. Global Journal of Pure and Applied Sciences, 21(2), 175–192.

    Google Scholar 

  • Emeka, V. I., Nyong, E. E., Emeka, C. N., & Ukpong, A. J. (2023d). Distribution of foraminiferal assemblages in contemporary bottom sediments of Qua-Iboe River estuary, southeast Nigeria. Journal of Foraminiferal Research, 2, 97–108.

    Google Scholar 

  • Fan, D., Shang, S., Cai, G., & Tu, J. (2015). Distinction and grain-size characteristics of intertidal heterolithic deposits in the middle Qiantang Estuary (East China Sea). Geo-Marine Letters, 35(3), 161–174. https://doi.org/10.1007/s00367-015-0398-2

    Article  Google Scholar 

  • Flemming, B. W. (2011). Geology, morphology, and sedimentology of estuaries and coasts. In B. W. Flemming & J. D. Hansom (Eds.), Treatise on estuaries and coasts. Estuarine and coastal geology and morphology (pp. 7–38). Elsevier. https://doi.org/10.1016/B978-0-12-374711-2.00302-8

  • Folk, R. L., & Ward, W. C. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3–26.

    Article  Google Scholar 

  • Friedman, G. M. (1961). Distinction between dune, beach, and river sands from their textural characteristics. Journal of Sedimentary Petrology, 31(4), 514–529.

    Google Scholar 

  • Friedman, G. M. (1967). Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. Journal of Sedimentary Petrology. https://doi.org/10.1306/74D716CC-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Friedman, G. M. (1979). Address of the retiring president of The International Association of Sedimentologists: differences in size distributions of populations of particles among sands of various origins. Sedimrntology, 26, 3–32.

    Article  Google Scholar 

  • Gao, S., & Collins, M. (1992). Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors.” Sedimentary Geology, 80, 47–60.

    Article  Google Scholar 

  • Gujar, A. R., Angusamy, N., & Rajamanickam, G. V. (2007). Characterization of opaques off Konkan Coast Maharashtra, Central West Coast of India. Journal of Minerals & Materials Characterization & Engineering, 6(1), 53–67.

    Article  Google Scholar 

  • Haschenburger, J. K. (2016). Cross-channel patterns of bed material transport in a poorly sorted sand-bed channel. Geomorphology, 273, 374–384.

    Article  Google Scholar 

  • Hayton, R. D. (1991). Reflections on the estuarine zone. Natural Resources Journal, 31, 123–138.

    Google Scholar 

  • Hori, K., Saito, Y., Zhao, Q., Cheng, X., Wang, P., Sato, Y., & Li, C. (2001). Sedimentary facies of the tide-dominated paleo-Changjiang (Yangtze) estuary during the last transgression. Marine Geology, 177(3–4), 331–351. https://doi.org/10.1016/S0025-3227(01)00165-7

    Article  Google Scholar 

  • Li, G., Du, R., Tang, J., Li, Z., Xia, Q., Shi, B., Zhou, L., Yang, Y., & Zhang, W. (2022). Comparison of the graphic and moment methods for analyzing grain-size distributions: a case study for the Chinese inner continental shelf seas. International Journal of Sediment Research, 37(6), 729–736. https://doi.org/10.1016/j.ijsrc.2022.05.001

    Article  Google Scholar 

  • Martins, L. R. (2003). Recent sediments and grain-size analysis. Gravel, 1, 90–105.

    Google Scholar 

  • McLaren, P. (1981). An interpretation of trends in grain size measures. Journal of Sedimentary Petrology, 51(2), 611–624. https://doi.org/10.1306/212F7CF2-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • McLaren, P., & Bowles, D. (1985). The effects of sediment transport on grain-size distributions. Journal of Sedimentary Research, 55(4), 457–470.

    Google Scholar 

  • Mead, S., & Moores, A., (2005). Estuary sedimentation: A review of estuarine sedimentation in the Waikato Region. Environment Waikato Technical Report Series 2005/13 Document #: 989833.

  • Oghale, L. O. O., Antia, E., Soronnadi-Ononiwo, G. C., & Debekeme, P. (2015). Grain size distribution of a modern tidal river: A case study of Calabar River, South-South Nigeria. International Journal of Science and Research, 4(1), 2319–7064.

    Google Scholar 

  • Ojong, R. A., Ugar, S. I., Odong, P. O., Otele, A., Emeka, C. N., & Itowe, K. (2023). Pebble morphometry and sieve analysis: Tools in determining depositional environments in Oron and environs. Global Journal of Geological Sciences, 21(2), 201–213.

    Google Scholar 

  • Okon, L. E., & Asuquo, F. E. (2012). The impact of flow regime on the sedimentation pattern of Calabar River, South-East Nigeria. Journal of Oceanography and Marine Science, 3(2), 19–31. https://doi.org/10.5897/JOMS11.020

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstone. Springer-Verlag. https://doi.org/10.1007/978-1-4615-9974-6

  • Ralston, D. K., & Geyer, W. R. (2017). Sediment transport time scales and trapping efficiency in a tidal river. Journal of Geophysical Research: Earth Surface, 122(11), 2042–2063.

    Article  Google Scholar 

  • Reineck, H. E., & Singh, I. B. (1986). Depositional sedimentary environments (2nd ed.). Springer-Verlag.

  • Roem, M., Musa, M., & Risjani, Y. (2021). Sediment dynamics and depositional environment on Panjang Island reef flat, Indonesia: insight from grain size parameters. Aquaculture, Aquarium, Conservation & Legislation, 14(1), 357–370.

    Google Scholar 

  • Román, J. M. P., & Achab, M. (1999). Grain-size trends associated with sediment transport patterns in Cadiz Bay (southwest Iberian Peninsula). Boletin-Instituto Espanol De Oceanografia, 15, 269–282.

    Google Scholar 

  • Scheidegger, A. E., & Potter, P. E. (1971). Down current decline of grain size and thickness of single turbidite beds: a semi-quantitative analysis. Sedimentology, 17, 41–49.

    Article  Google Scholar 

  • Semeniuk, V. (1981). Sedimentology and stratigraphic sequence of a tropical tidal flat, King Sound, N. Western Australia. Sedimentary Geology, 29, 195–221.

    Article  Google Scholar 

  • Sivasamandy, R., & Ramesh, R. (2014). Granulometric studies of the Sediments from Kolakkudi Lake. Musiri Taulk, International Research Journal of Earth Sciences, 2(11), 1–10.

    Google Scholar 

  • Siyi, J., Fangjian, X., Yan, L., Xiling, L., Yongfang, Z., & Wei, X. (2014). Distributional characteristics of grain sizes of surface sediments in the Zhujiang River Estuary. Acta Oceanologica Sinica, 33(4), 30–36. https://doi.org/10.1007/s13131-014-0462-1

    Article  Google Scholar 

  • Soulsby, R. L. (1997). Dynamics of marine sands: a manual for practical applications. Thomas Telford.

  • Southard, J. B., & Boguchwal, L. A. (1990). Bed configurations in steady unidirectional water flows. Part 2. Synthesis of flume data. Journal of Sedimentary Petrology, 60(5), 658–679.

    Article  Google Scholar 

  • Sundborg, A. (1956). The River Klaralven, a study of fluvial process. Geografisker Annaler, 38, 217–316.

    Google Scholar 

  • Tessier, B. (1993). Upper intertidal rhythmites in the Mont-Saint-Michel Bay (NW France): Perspectives for paleoreconstruction. Marine Geology, 110(3–4), 355–367. https://doi.org/10.1016/0025-3227(93)90093-B

    Article  Google Scholar 

  • Ukpong, A. J., Ikediasor, C. K., Emeka, C. N., & Emeka, V. E. (2015). Tidal influence on foraminifera distribution in a typical mesotidal river: a case study of the Great Kwa River, southeastern Nigeria. International Journal of Scientific and Engineering Research, 6(7), 889–897.

    Google Scholar 

  • Valia, H. S., & Cameron, B. (1977). Skewness as a Paleoenvironmental Indicator. SEPM Journal of Sedimentary Research, 47(2), 784–793. https://doi.org/10.1306/212f724d-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  • van den Berg, J. H., & Nio, S. D. (2010). Sedimentary structures and their relation to bedforms and flow conditions. EAGE. https://doi.org/10.3997/9789073781764

  • Visher, G. S. (1969). Grain size distributions and depositional processes. Journal of Sedimentary Petrology, 39(3), 1074–1106. https://doi.org/10.1306/74D71D9D-2B21-11D7-8648000102C1865D

    Article  Google Scholar 

  • Wolanski, E., Williams, D., & Hanert, E. (2006). The sediment trapping efficiency of the macro-tidal Daly Estuary, tropical Australia. Estuarine, Coastal and Shelf Science, 69(1–2), 291–298.

    Article  Google Scholar 

  • Zhang, X., Dalrymple, R. W., Yang, S. Y., Lin, C. M., & Wang, P. (2015). Provenance of Holocene sediments in the outer part of the Paleo-Qiantang River estuary, China. Marine Geology, 366, 1–15. https://doi.org/10.1016/j.margeo.2015.04.008

    Article  Google Scholar 

Download references

Acknowledgements

Profs. E. E. Antia, E. B. Akpan, N. U. Essien and Dr. E. E. U. Ntekim are thanked for their contributions to the reality of this article. A special thanks to Dr. Martin Austin of the School of Ocean Sciences, Bangor University, for his painstaking review of this article. With warm regards, all members and staff of the Institute of Oceanography and Department of Geology, University of Calabar, Cross River State, Nigeria, are acknowledged for their contribution to the professional advancement of the authors of this work.

Author information

Authors and Affiliations

Authors

Contributions

CNE and VIE collected samples and wrote the manuscript. EDE, RAO, and CPC prepared the figures and reviewed the manuscript.

Corresponding author

Correspondence to Chimezie Ndunagum Emeka.

Ethics declarations

Conflict of interest

The authors of this work received no funding from any organization. The authors have no declared competing interests that are pertinent to the subject matter of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emeka, C.N., Emeka, V.I., Ebong, E.D. et al. Dynamics in a tropical meso-tidal river: Great Kwa River, southeastern Nigeria (Gulf of Guinea). J. Sediment. Environ. 8, 617–633 (2023). https://doi.org/10.1007/s43217-023-00151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00151-9

Keywords

Navigation