Skip to main content
Log in

The pattern of organic matter type occurrence and distribution in predicting hydrocarbon source formation: an example from Eocene Niger Delta Basin shale deposits

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The pattern of Eocene Niger Delta source rock organic matter occurrence, distribution, and maturity in a well located in the northwestern depobelt of the Niger Delta is investigated to characterize the hydrocarbon source potential in this part of the delta. A total of 51 core and 45 non-composited ditch-cutting shale samples were subjected to total organic carbon (TOC) analysis and Rock–Eval pyrolysis. Primary and derived data show good–excellent generation potential. Cross plots of hydrogen index (HI) versus TOC were used to classify kerogen types as II, II/III, and III, which exhibited stratigraphic variation. Tmax and vitrinite equivalent (Requ) indicate early-peak maturity, contrary to views that maturation was not possible above depths of 2500 m. The production index (PI) indicated thermal conversion with depth. The distribution pattern of type II kerogen in the immature zone and types II/III and III in the mature zone appears anomalous. While it suggests and favors the effect of hydrocarbon generation and expulsion (fractional conversion, f = 48.25–68.19%) and stratigraphic variability as a probable cause of observed kerogen types variability and Tmax trend between the immature and mature zones, stratigraphic wedging at the Akata and Agbada Formations interface/transition zone, it may not be discounted as a probable cause of the observed anomaly. The result of this study adds to the range of answers advanced in resolving the age-long controversies on the actual source sediments of hydrocarbon resources in this part of the Niger Delta Basin and other similar settings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abarghani, A., Ostadhassan, M., Gentzis, T., Carvajal-Ortiz, H., Ocubalidet, S., Bubach, B., Mann, M., & Hou, X. (2019). Correlating Rock-Eval-Tmax with bitumen reflectance from organic petrology in the Bakken Formation. International Journal of Coal Geology, 205, 87–104.

    Article  Google Scholar 

  • Abidin, N. S. Z., Mustapha, K. A., Abdullah, W. H., & Konjing, Z. (2022). Paleoenvironment reconstruction and peat-forming conditions of Neogene paralic coal sequences from Mukah, Sarawak, Malaysia. Scientific Reports, 12, 8870.

    Article  Google Scholar 

  • Avbovbo, A. A. (1978). Tertiary lithostratigraphy of Niger Delta. American Association of Petroleum Geologists Bulletin, 62, 295–306.

    Google Scholar 

  • Bohacs, K. M. (1993). Source quality variations tied to sequence development in the Monterey and associated formations, southwestern California. In B. J. Katz & L. M. Pratt (Eds.), Source rocks in a sequence stratigraphic framework (Vol. 37, pp. 177–204). AAPG Studies in Geology.

  • Burwood, R., De Witte, S. M., Mycke, B., & Paulet, J. (1995). Petroleum geochemical characterization of the lower Congo Coastal Basin Bucomazi Formation. In B. J. Katz (Ed.), Petroleum source rocks. Berlin: Springer-Verlag.

    Google Scholar 

  • Caplan, M. L., & Bustin, R. M. (1996). Factors governing organic matter accumulation and preservation in a marine petroleum source rock from the Upper Devonian to Lower Carboniferous Exshaw Formation, Alberta. Bulletin of Canadian Petroleum Geology, 44, 474–494.

    Google Scholar 

  • Carroll, A. R., & Bohacs, K. M. (2001). Lake-type controls on petroleum source rock potential in non-marine basins. American Association of Petroleum Geologists Bulletin, 85, 1033–1053.

    Google Scholar 

  • Chaouche, A. (2013). Geological and geochemical attributes of Paleozoic source rocks and their remaining potential for unconventional resources in Ereg Oriental Algerian Sahara. AAPG Search and Discovery, article 80313.

  • Cobbold, P. R., Benjamin, J., & Clarke, H. L. (2009). Structural consequences of fluid overpressure and seepage forces in the outer thrust belt of the Niger Delta. Petroleum Geoscience, 15, 3–15.

    Article  Google Scholar 

  • Demaison, G., & Huizinga, B. J. (1994). Genetic classification of petroleum systems using three factors: Charge, migration, and entrapment. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system—From source to trap (Vol. 60, pp. 73–89). AAPG Memoir.

  • Demaison, G. J., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. American Association of Petroleum Geologists Bulletin, 64, 1179–1209.

    Google Scholar 

  • Dembicki, H., Jr. (1984). An interlaboratory comparison of source rock data. Geochimica et Cosmochimica Acta, 48(12), 2641–2649.

    Article  Google Scholar 

  • Demirel, I. H., Yurtsever, T. S., & Guneri, S. (2001). Petroleum systems of the Adiyaman region, Southeastern Anatolia, Turkey. Marine and Petroleum Geology, 18, 391–410.

    Article  Google Scholar 

  • Doust H., & Omatsola, E. (1990). Niger Delta. In J. D. Edwards & P. A. Santogrossi (Eds), Divergent/passive margin basins (Vol. 48, pp. 201–238). AAPG Memoir.

  • Dow, W. G. (1977). Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7, 79–99.

    Article  Google Scholar 

  • Ejedawe, J. E., Coker, S. J. L., Lambert-Aikhionbare, D. O., Alofe, K. B., & Adoh, F. O. (1984a). Evolution of oil generative window and oil and gas occurrence in Tertiary Niger Delta Basin. American Association of Petroleum Geologists Bulletin, 68, 744–751.

    Google Scholar 

  • Ejedawe, J. E., Lambert-Aikhionbare, D. O., & Okorie, C. (1984b). Time of hydrocarbon explusion in Niger delta basin. Nigerian Association of Petroleum Explorationists Bulletin, 1, 1–10.

    Google Scholar 

  • Ekweozor, C. M., & Daukoru, E. M. (1994). Northern delta depobelt portion of the Akata–Agbada(!) petroleum system, Niger Delta, Nigeria. In L. B. Magoon & W. G. Dow (Eds.), The petroleum system – From source to trap (Vol. 460, pp. 599–613). AAPG Memoir.

  • Ekweozor, C. M., & Daukoru, E. (1984). Petroleum source bed evaluation of Tertiary Niger Delta, Reply. American Association of Petroleum Geologists Bulletin, 68, 391–394.

    Google Scholar 

  • Ekweozor, C. M., & Okoye, E. M. (1980). Petroleum source-bed evaluation of Tertiary Niger Delta. American Association of Petroleum Geologists Bulletin, 64, 151–1259.

    Google Scholar 

  • Ekweozor, C. M., & Telnaes, N. (1990). Oleanane parameter verification by quantitative study of the biomarker occurrence in sediments of Niger Delta. Organic Geochemistry, 16, 401–413.

    Article  Google Scholar 

  • Epuh, E. E., Olorode, D. O., Nwilo, P. C., & Ezeigbo, C. U. (2012). The development of the geologic model of the Gongola Basin depositional sequence using lithofacies map. British Journal of Science, 42(3), 42–58.

    Google Scholar 

  • Evamy, B. D., Haremboure, J., Kamerling, P., Knaap, W. A., Molloy, F. A., & Rowlands, P. H. (1978). Hydrocarbon habitat of Tertiary Niger Delta. American Association of Petroleum Geologists Bulletin, 62, 1–39.

    Google Scholar 

  • Gani, M. R., & Bhattacharya, J. P. (2005). Lithostratigraphy versus chronostratigraphy in facies correlations of quaternary deltas: Application of bedding correlation. In L. Giosan & J. P. Bhattacharya (Eds.), River Deltas—Concepts, models, and examples (Vol. 83, pp. 31–48). SEPM Special Publication.

  • Ghassal, B. I., Littke, R., Sachse, V., Sindern, S., & Schwarzbauer, J. (2016). Depositional environment and source rock potential of Cenomanian and Turonian sedimentary rocks of the Tarfaya Basin, Southwest Morocco. Geologica Acta, 14(4), 419–441.

    Google Scholar 

  • Gogou, A., Stratigakis, N., Kanakidou, M., & Stephanou, E. G. (1996). Organic aerosols in Eastern Mediterranean: Components source reconciliation by using molecular markers and atmospheric back trajectories. Organic Geochemistry, 25, 79–96.

    Article  Google Scholar 

  • Haack, R. C., Sundararaman, P., Diedjomahor, J. O., Xiao, H., Gant, N. J., May, E. D., & Kelsch, K. (2000). Niger Delta petroleum systems, Nigeria. In M. R. Mello & B. J. Katz (Eds.), Petroleum systems of South Atlantic margins (Vol. 73, pp. 213–232). AAPG Memoir.

  • Hackley, P. C., & Cardott, B. J. (2016). Application of organic petrography in North American shale petroleum systems: A review. International Journal of Coal Geology, 163, 8–51.

    Article  Google Scholar 

  • Herbin, J. P., Müller, C., Greyssant, J. R., Mélères, F., & Penn, I. E. (1993). Variation of the distribution of organic matter within a transgressive systems tract: Kimmeridge Clay (Jurassic). In B. J. Katz and L. M. Pratt (Eds.), Source rocks in a sequence stratigraphic framework (Vol 37, pp. 67–100). AAPG Studies in Geology.

  • Hülse, D., Arndt, S., & Ridgwell, A. (2019). Mitigation of extreme ocean anoxic event conditions by organic matter sulfurization. Paleoceanography and Paleoclimatology, 34, 476–489.

    Article  Google Scholar 

  • Hunt, J. M. (1995). Petroleum geochemistry and geology. Freeman and Company.

    Google Scholar 

  • Jarvie, D. M., Claxton, B. L., Henk, F., & Breyer, J. T. (2001). Oil and shale gas from the Barnett Shale, Fort Worth Basin, Texas. American Association of Petroleum Geologists Bulletin, 85, A100.

    Google Scholar 

  • Kang, S., Longyi, S., Lanzhi, Q., Shuxia, L., Jinshui, L., Wenchao, S., Xiaodong, C., Eriksson, K. A., & Qianyu, Z. (2020). Hydrocarbon generation potential and depositional setting of Eocene oil-prone coaly source rocks in the Xihu sag, East China Sea Shelf Basin. ACS Omega, 5(50), 32267–32285.

    Article  Google Scholar 

  • Katz, B. J. (2005). Controlling factors on source rock development – A review of productivity, preservation, and sedimentation rate. In N. Harris (Ed.), Deposition of organic carbon-rich sediments: Models, mechanism and consequences (Vol. 82, pp. 7–16). SEPM Special Publication.

  • Katz, B. J., & Lin, F. (2021). Consideration of the limitations of thermal maturity with respect to vitrinite reflectance, Tmax, and other proxies. American Association of Petroleum Geologists Bulletin, 105(4), 695–720.

    Article  Google Scholar 

  • Katz, B. J., & Royle, R. A. (2001). Variability of source rock attributes in the Monterey Formation, California. In C. M. Issacs & J. Rullkotter (Eds.), The Monterey Formation: From rocks to molecules (pp. 107–130). New York: Columbia University Press.

    Google Scholar 

  • Knox, G. J., & Omatsola, E. M. (1987). Development of the Cenozoic Niger Delta in terms of the “Escalator Regression Model. In Proceedings of the KPMG Symposium on Coastal-lowlands and and Geotechnolog (pp. 181–202). Kluwer Academic Publishers,

  • Lambert-Aikhionbare, D. O., & Ibe, A. C. (1984). Petroleum source-bed evaluation of the Tertiary Niger Delta: Discussion. American Association of Petroleum Geologists Bulletin, 68, 387–394.

    Google Scholar 

  • Laughrey, C. D. (2014). Introductory geochemistry for shale gas, condensate-rich shales and tight oil reservoir: Unconventional Resources Technology Annual Meeting Short Course. Denver, Colorado.

  • Lee, H. T., & Sun, L. C. (2014). Correlation among vitrinite reflectance Ro%, pyrolysis parameters, and atomic H/C ratio: Implications for evaluating petroleum potential of coal and carbonaceous materials. Journal of Energy and Natural Resource, 3(6), 85–100.

    Article  Google Scholar 

  • Lewan, M. D., & Pawlewicz, M. J. (2017). Reevaluation of thermal maturity and stages of petroleum formation of the Mississippian Barnett Shale, FortWorth Basin, Texas. American Association of Petroleum Geologists Bulletin, 101(12), 1945–1970.

    Article  Google Scholar 

  • Li, S., Shao, L., Liu, J., Qin, L., Kang, S., Eriksson, K. A., Chen, X., Yu, Z., & Liu, J. (2022). Oil generation model of the liptinite-rich coals: Palaeogene in the Xihu Sag, East China Sea Shelf Basin. Journal of Petroleum Science and Engineering, 209, 109844.

    Article  Google Scholar 

  • Lin, W., Ferron, C., Karner, S., & Bhattacharya, J. P. (2020). Classification of paralic channel sub-environments in an ancient system using outcrops: The Cretaceous Gallup system, New Mexico, U.S.A. Journal of Sedimentary Research, 90(9), 1094–1113.

    Article  Google Scholar 

  • Lin, R. (1995). An interlaboratory comparison of vitrinite reflectance measurement. Organic Geochemistry, 22(1), 1–9.

    Article  Google Scholar 

  • Martínez, M. A., Prámparo, M. B., Quattrocchio, M. E., & Zavala, C. A. (2008). Depositional environments and hydrocarbon potential of the Middle Jurassic Los Molles Formation, Neuquén Basin, Argentina: Palynofacies and organic geochemical data. Revista Geológica De Chile, 35(2), 279–305.

    Article  Google Scholar 

  • Morgan R. (2003). Prospectivity in ultradeep water: the case for petroleum generation and migration within the outer parts of the Niger Delta apron. In T. J. Arthur, D. S. McGregor, & N. R. Cameron (Eds.), Petroleum Geology of Africa: New themes and developing technologies (Vol. 207 pp. 151–164). Geological Society London, Special Publications.

  • Mukhopadhyay, P. K., Wade, J. A., & Kruge, M. A. (1995). Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source correlation based on pyrolysis of Asphaltenes, Scotian Basin, Canada. Organic Geochemistry, 22(1), 85–104.

    Article  Google Scholar 

  • Nwachukwu, J. I., & Chukwurah, P. I. (1986). Organic matter of Agbada Formation, Niger Delta, Nigeria. American Association of Petroleum Geologists Bulletin, 70, 48–55.

    Google Scholar 

  • Ogbe, O. B. (2020). Sequence stratigraphic controls on reservoir characterization and architectural analysis: A case study of Tovo fiels, coastal swamp depobelt, Niger Delta Basin, Nigeria. Marine and Petroleum Geology, 121, 104579.

    Article  Google Scholar 

  • Ogbe, O. B. (2021). Reservoir sandstone grain-size distributions: Implications for sequence stratigraphic and reservoir depositional modelling in Otovwe field, onshore Niger Delta Basin, Nigeria. Journal of Petroleum Science and Engineering, 203, 108639.

    Article  Google Scholar 

  • Ogbe, O. B., & Osokpor, J. (2021). Depositional facies, sequence stratigraphy and reservoir potential of the Eocene Nanka Formation of the Ameki Group in Agu-Awka and Umunya, southeast Nigeria. Elsevier Heliyon, 7, e05846.

    Article  Google Scholar 

  • Osokpor, J., & Chaanda, M. S. (2020). Source rock maturity evaluation in the coastal swamp Depobelt, Western Niger Delta Basin. Scientia Africana, 19(1), 57–72.

    Google Scholar 

  • Osokpor, J., & Osokpor, O. J. (2017). Biomarker geochemistry of fine-grained sediments from subsurface Niger Delta Basin: Implication for source rock prediction. Development Journal of Science and Technology Research, 6(1), 45–57.

    Google Scholar 

  • Osokpor, J., & Overare, B. (2019). Source rock evaluation and hydrocarbon potentials in the Northern Depobelt, Niger Delta Basin. Journal of Mining and Geology, 55(1), 17–28.

    Google Scholar 

  • Overare, B., Azmy, K., Garzanti, E., Osokpor, J., Ogbe, O. B., & Avwenagha, E. O. (2021). Decrypting geochemical signatures in subsurface Niger delta sediments: Implication for provenance, weathering, and paleo-environmental conditions. Marine and Petroleum Geology, 126, 104879.

    Article  Google Scholar 

  • Padel, M., Clausen, S., Álvaro, J. J., & Casas, J. M. (2019). Review of the Ediacaran-Lower Ordovician (pre-Sardic) stratigraphic framework of the Eastern Pyrenees, southwestern Europe. Geologica Acta: An International Earth Science Journal, 6(4), 339–355.

    Google Scholar 

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon and W. G. Dow (Eds), The petroleum system - From source to trap. (Vol. 60, pp. 93–120). AAPG Memoir.

  • Peters, K. E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. American Association of Petroleum Geologists Bulletin, 70, 318–329.

    Google Scholar 

  • Peters, K. E., Cunningham, A. E., Walters, C. C., Jiang, J., & Fan, Z. (1996). Petroleum systems in the Jiangling-Dangyang area, Jianghan Basin, China. Organic Geochemistry, 24, 1035–1060.

    Article  Google Scholar 

  • Peters, K. E., Hackley, P. C., Thomas, J. J., & Pomerantz, A. E. (2018). Suppression of vitrinite reflectance by bitumen generated from liptinite during hydrous pyrolysis of artificial source rock. Organic Geochemistry, 125, 220–228.

    Article  Google Scholar 

  • Ratnayake, A. S., Sampei, Y., Ratnayake, N. P., & Roser, B. P. (2017). Middle to late Holocene environmental changes in the depositional system of the tropical brackish Bolgoda Lake, coastal southwest Sri Lanka. Palaeogeography, Palaeoclimatology, Palaeoecology, 465, 122–137.

    Article  Google Scholar 

  • Reijers, T. J. A. (2011). Stratigraphy and sedimentology of the Niger Delta. Geologos, 17(3), 133–162.

    Article  Google Scholar 

  • Riediger, C. L. (1993). Solid bitumen reflectance and Rock-Eval Tmax as maturation indices: An example from the “Nordegg Member”, Western Canada Sedimentary Basin. International Journal of Coal Geology, 22(3–4), 295–315.

    Article  Google Scholar 

  • Riedinger, N., Scholz, F., Abshirea, M. L., & Zabel, M. (2021). Persistent deep water anoxia in the eastern South Atlantic during the last ice age. PNAS, 118(49), e2107034118.

    Article  Google Scholar 

  • RobertCordell, W. H. R. J. (Ed.). (1980). Problems of petroleum migration. AAPG Studies in Geology.

    Google Scholar 

  • Saugy, L., & Eyer, J. A. (2003). Fifty years of exploration in the Niger Delta (West Africa). In M. T. Halbouty (Ed.), Giant oil and gas fields of the decade 1990–1999. American Association of Petroleum Geologists Bulletin (Vol. 78, pp. 211–226).

  • Schiefelbein, C. F., Zumberge, J. E., Cameron, N. R., & Brown, S. W. (1999). Petroleum systems in the South Atlantic margins. In N. R. Cameron, R. H. Bate, & V. S. Clure (Eds.), The oil and gas habitats of the South Atlantic (Vol. 153, pp. 169–179). Geological Society London, Special Publications.

  • Shalaby, M. R., Irwan, M. H., & Osli, L. N. (2020). Geochemical characteristics and depositional environments of the Narimba Formation source rock, Bass Basin, Australia. Journal of Petroleum Exploration and Production Technology, 10, 3207–3225.

    Article  Google Scholar 

  • Sinninghe Damsté, J. S., de las Heras, F. X. C., van Bergen, P. F., & de Leeuw, J. W. (1993). Characterization of Tertiary Catalan lacustrine oil shales: discovery of extremely organic sulphur-rich type I kerogens. Geochimica et Cosmochimica Acta, 57(2), 389–415.

    Article  Google Scholar 

  • Stacher, P. (1995). Present understanding of the Niger Delta hydrocarbon habitat. In M. N. Oti & G. Postma (Eds.), Geology of delta (pp. 257–267). Rotterdam: AA Balkema.

    Google Scholar 

  • Tissot, B. P., Durand, B., Espitalié, J., & Combaz, A. (1974). Influence of the nature and diagenesis of organic matter in formation of petroleum. American Association of Petroleum Geologists Bulletin, 58, 499–506.

    Google Scholar 

  • Tuttle, M. L. W., Charpentier, R. R., & Brownfield, M. E. (1999). The Niger Delta Petroleum System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa. U.S. Geol. Surv. Open File Report, 99-50-H.

  • Udo, O. T., & Ekweozor, C. M. (1990). Significance of oleanane occurrence in shales of Opuama Channel Complex, Niger delta. Energy and Fuels, 4, 248–254.

    Article  Google Scholar 

  • Udoh, A. C., Bassey, C. E., Ekot, A. E., & Udoh, M. U. (2020). Sequence stratigraphic study of ‘X’ field in eastern offshore of Niger Delta, Nigeria. Journal of Geology and Mining Research, 12(2), 65–79.

    Article  Google Scholar 

  • van Krevelen, D. W. (1961). Coal. Elsevier.

    Google Scholar 

  • Weber, K. J. (1987). Hydrocarbon distribution patterns in Nigerian growth fault structures controlled by structural styles and stratigraphy. Journal of Petroleum Science and Engineering, 1, 91–104.

    Article  Google Scholar 

  • Zhang, J. (2017). Maturity determination of hydrocarbon source rocks in Xihu Sag: Evidence from fluorescence alteration of multiple macerals. Petroleum Geology and Exploration, 39, 417–422.

    Google Scholar 

  • Zhang, X., Li, S., Wang, X., Zhao, X., & Yin, T. (2021). Expression of the early Aptian Oceanic Anoxic Event (OAE) 1a in lacustrine depositional systems of East China. Global and Planetary Change, 196(1), 103370.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shell Petroleum Development Company (SPDC) in Nigeria for providing the data for the work. The authors sincerely express their great thanks to three anonymous reviewers for their constructive inputs and suggestions, which significantly improved the manuscript. Thanks also due to the journal handling editor, Hernani Chaves for reviewing and editing the revised manuscript.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Dr. J. Osokpor: Conceptualization of work, data collection, analysis, and interpretation of results, drafted the original manuscript, prepared the figures, and reviewed the manuscript. Dr. O.B. Ogbe: Conceptualization of work, interpretation of results, drafted the original manuscript, prepared the figures and submission, and reviewed the manuscript. .

Corresponding author

Correspondence to Ovie B. Ogbe.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare relevant to this article's content.

Additional information

Communicated by H. Chaves

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osokpor, J., Ogbe, O.B. The pattern of organic matter type occurrence and distribution in predicting hydrocarbon source formation: an example from Eocene Niger Delta Basin shale deposits. J. Sediment. Environ. 8, 507–523 (2023). https://doi.org/10.1007/s43217-023-00146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00146-6

Keywords

Navigation