Skip to main content
Log in

Geochemistry and detrital geochronology of sandstones of Barail Group of Indo-Myanmar Range, NE India

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The sedimentary sequence of the Barail Group preserves the records of the depositional history of Indo-Myanmar Range during Eocene–Oligocene. Field investigation, geochemistry and detrital geochronology are used to study its geochemical characteristics, sediment provenance, paleoweathering condition, and tectonic setting. Major elements-based discrimination plots indicate that the sediments of this group were derived from quartzose sedimentary sources and were deposited in an active continental margin tectonic set-up. Barail sandstone displays a gentle sloping LREE and more or less flat HREE pattern and shows negative Eu anomaly and positive Sm anomaly. Paleoweathring indices indicate Barail sediments have undergone moderate to high weathering before deposition. Detrital zircon U–Pb reveal ages ranging from 3225 to 90 Ma, with clusters at 222–90 Ma, 1215–394 Ma, 1849–1364 Ma, 2500–2094 Ma and 3225–2094 Ma. These results indicate the majority of the sediments of the Barail Group of Indo-Myanmar Range were sourced from the Tethyan Sedimentary Sequence and Trans-Himalayan granitoids. They were deposited in shallow marine to deltaic environment and were deposited by the Brahmaputra River system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the datasets generated during this study are related to this work and have been included in this manuscript as a table and Supplementary Table. They are available for public access.

References

  • Acharyya, S. K. (2010). Tectonic Evolution of Indo-Burma Range with Special Reference to Naga-Manipur Hills. Memoir Geological Society of India, 75, 25–43.

    Google Scholar 

  • Aitchison, J. C., Ao, A., Bhowmik, S., Clarke, G. L., Ireland, T. R., Kachovich, S., Lokho, K., Stojanovic, D., Roeder, T., Truscott, N., Zhen, Y., & Zhou, R. (2019). Tectonic evolution of the western margin of the Burma microplate based on new fossil and radiometric age constraints. Tectonics, 38, 1718–1741.

    Article  Google Scholar 

  • Allen, R., Najman, Y., Carter, A., Barfod, D., Bickle, M. J., Chapman, H. J., Garzanti, E., Vezzoli, G., Ando, S., & Parrish, R. R. (2008). Provenance of the tertiary sedimentary rocks of the Indo-Burman ranges, Burma (Myanmar): Burman arc or Himalayan- derived? Journalof the Geological Society of London, 165, 1045–1057.

    Article  Google Scholar 

  • Arboit, F., Min, M., Chew, D., Mitchell, A., Drost, K., Badenszki, E., & Daly, J. S. (2021). Constraining the links between the Himalayan belt and the Central Myanmar Basins during the Cenozoic: An integrated multi-proxy detrital geochronology and trace-element geochemistry study. Geosciences Frontiers, 12, 657–676.

    Article  Google Scholar 

  • Bhatia, M. R.(1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91(6), 611- 627, https://doi.org/10.1086/628922.

  • Bhatia, M. R. (1985). Plate tectonics and geochemical composition of sandstones: A reply. The Journal of Geology, 93, 85–87.

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contribution to Mineralogy and Petrology, 9, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  • Blatt, H., Middleton, G., & Murray, R. (1980) Origin of sedimentary rocks (2nd edition). Prentice-Hall,782 pp.

  • Borgohain, P., Hussain, M.F., Bezbaruah, D., Vanthangliana, V., Phukan, P.P., Gogoi., M.P. & Bharali, B. (2020) Petrography and whole-rock geochemistry of Oligocene Barail Sandstones of Surma basin: Implications for tectono-provenance and paleoclimatic condition. Journal of Earth system Science, 129179, https://doi.org/10.1007/s12040-020-01431-y.

  • Bracciali, L., Marroni, M., Luca, P., & Sergio, R. (2007). Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): From source areas to configuration of margins. Geological Society of America, Special Papers, 420, 73–93. https://doi.org/10.1130/2006.2420(06)

    Article  Google Scholar 

  • Crook, K. A. W. (1974). Lithogenesis and geotectonics: The significance of compositional variation in Flyscharenites (greywackes). Society of Economical Palaeontological and Mineralogical Special Publications, 19, 304–310.

    Google Scholar 

  • Cullers, R. L. (1994). The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica Et Cosmochimica Acta, 58, 4955–4972. https://doi.org/10.1016/0016-7037(94)90224-0

    Article  Google Scholar 

  • Cullers, R. L. (2000). The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51, 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  • Cullers, R. L. (2002). Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chemical Geology, 191, 305–327. https://doi.org/10.1016/S0009-2541(02)00133-X

    Article  Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Research, 104, 77–93.

    Article  Google Scholar 

  • Cullers, R. L., & Podkovyrov, V. N. (2002). The source and origin of terrigenous sedimentary rocks in the mesoproterozoic Ui group, southeastern Russia. Precambrian Research., 117, 157–183. https://doi.org/10.1016/S0301-9268(02)00079-7

    Article  Google Scholar 

  • Ekosse, G. (2001). Provenance of the Kgwakgwe kaolin deposit in southeastern Botswana and its possible utilization. Applied Clay Science, 20, 137–152.

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO

    Article  Google Scholar 

  • Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the devonian gramscatho basin, south cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society., 144, 531–542. https://doi.org/10.1144/gsjgs.144.4.0531

    Article  Google Scholar 

  • Geological Survey of India (GSI) (2011). Geology and mineral resources of Manipur, Mizoram, Nagaland and Tripura. Miscellaneous Publication, 30(IV), Vol 1(Part-2)

  • Gogoi, M., Sarmah, R. K., Goswami, T. K., Mahanta, B. N., Laishram, R., Saikia, H., & Oza, B. (2021). Petrography, clay mineralogy and geochemistry of Lower Gondwana sandstones of Western Arunachal Pradesh Himalayas, India. Journal of Sedimentary Environment, 6, 561–583.

    Article  Google Scholar 

  • Harnois, L. (1988). The CIW index: A new chemical index of weathering. Sedimentary Geology, 55(3–4), 319–322. https://doi.org/10.1016/0037-0738(88)90137-6

    Article  Google Scholar 

  • Haunhar, H., Lalnunmawa, J., & Dawngliana, O. M. S. (2021). Geochemistry of barail sandstone in champhai, mizoram: Implications on provenance and weathering history. Journal of Earth System Science. https://doi.org/10.1007/s12040-020-01515-9

    Article  Google Scholar 

  • Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Hussain, M. F., & Bharali, B. (2019). Whole-rock geochemistry of tertiary sediments of mizoram Foreland Basin, NE India: Implications for source composition, tectonic setting and sedimentary processes. Acta Geochemica. https://doi.org/10.1007/s11631-019-00315-3

    Article  Google Scholar 

  • Khin, K., Zaw, K., & Aung, L. T. (2017). Geological and tectonic evolution of the Indo-Myanmar Ranges (IMR) in the Myanmar region. Geological Society London Memoirs, 48(1), 65–79.

    Article  Google Scholar 

  • Lin, D., Goswami, T. K., Fulong, C., Baral, U., Sarmah, R. K., & Bezbaruah, D. (2022). Detrital zircon U-Pb ages of Tertiary sequences (Palaeocene-Miocene): Inner fold belt and belt of schuppen, Indo-Myanmar ranges India. Geological Journal. https://doi.org/10.1002/gj.4446

    Article  Google Scholar 

  • Madhavaraju, J., Tom, M., Lee, Y. I. L., Balaram, V., Ramasamy, S., Carranza-Edwards, A., & Ramachandran, A. (2016). Provenance and tectonic settings of sands from Puerto Penasco, Desemboque and Bahia Kino beaches, gulf of California, Sonora. Mexico Journal of South American Earth Sciences, 71, 262–275.

    Article  Google Scholar 

  • McLennan, S. M., Hemming, S., McDaniel, D. K., & Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In M. J. Johnson & A. Basu (Eds.), Processes controlling the composition of clastic sediments (pp. 21–40). Geological Society of America Special Papers.

  • McLennan, S. M., Taylor, S. R., McCulloch, M. T., & Maynard, J. B. (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochimica Et Cosmochimica Acta, 54, 2015–2050.

    Article  Google Scholar 

  • Mitchell, A., Chung, S. L., Oo, T., Lin, T. H., & Hung, C. H. (2012). Zircon U-Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? Journal of Asian Earth Sciences, 56, 1–23.

    Article  Google Scholar 

  • Najman, Y., Bracciali, L., Parrish, R. R., Chisty, E., & Copley, A. (2016). Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth and Planetary Science Letters, 433, 1–9.

    Article  Google Scholar 

  • Nakamura, N. (1974). Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica Et Cosmochimica Acta, 38(5), 757–775.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  • Ningthoujam, P. S., Dubey, C. S., Guillot, S., Fagion, A. S., & Shukla, D. P. (2012). Origin and serpentinization of ultramafic rocks of Manipur ophiolite complex in the Indo-Myanmar subduction zone, Northeast India. Journal of Asian Earth Sciences, 50, 128–140.

    Article  Google Scholar 

  • Pandey, S., & Parcha, S. K. (2017). Provenance, tectonic setting and source-area weathering of the lower Cambrian sediments of the Parahio valley in the Spiti basin India. Journal of Earth System Science, 126, 27.

    Article  Google Scholar 

  • Pebam, J., Duraisamy, K., Krishna, K. V. S. S., Sengupta, S., Ghosh, J. G., Kumar, R., Basak, K., & Guha, D. (2022). Zircon U-Pb ages of Lohit Plutonic Complex, NEIndia: Constraints on episodic magmatism of easternTrans-Himalaya. Geological Journal, 57(2), 503–513.

    Article  Google Scholar 

  • Pettijohn, F. J. (1984). Sedimentary rocks (3rd ed., p. 628). Chennai: CBS Publishers.

    Google Scholar 

  • Rahman, M. J. J., Xiao, W., Hossain, M. S., Yeasmin, R., Sayem, A. S. M., Ao, S., Yang, L., Abdullah, R., & Dina, N. T. (2020). Geochemistry and detrital zircon U-Pb dating of pliocene-pleistocene sandstones of the Chittagong Tripura fold belt (Bangladesh): Implications for provenance. Gondwana Research, 78, 278–290.

    Article  Google Scholar 

  • Rangarao, A. (1983). Geology and hydrocarbon potentials of a part of Assam-Arakan basin and its adjoining region Symposium on Petroliferous basins of India 127–158.

  • Ravikant, V., Fu-Yuan, W., & Wei-Qiang, J. (2015). Detrital zircon U-Pb age and isotopic composition from foreland sediments of the Assam Basin, NE India: Constraints on sediment provenance and tectonics of the Eastern Himalaya. Journal of Asian Earth Sciences, 111, 254–267.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). The Composition of the continental crust. The CrustIn H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (Vol. 3, pp. 1–64). Elsevier-Pergamon Oxford. https://doi.org/10.1016/b0-08-043751-6/03016-4

  • Sawant, S., Kumar, K. V., Balaram, V., Subba Rao, D. V., Rao, K. S., & Tiwari, R. P. (2017). Geochemistry and genesis of Cratonderived sediments from active continental margins: Insights from the Mizoram Foreland Basin, NE India. Chemical Geology, 470, 13–32.

    Article  Google Scholar 

  • Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., & Whitehouse, M. J. (2008). Plesovice zircon - a newnatural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust; its composition and evolution (p. 328). Blackwell Scientific Publication.

  • Yadav, P. K., & Das, M. (2021). Geochemistry of metasedimentary clastic rocks from dhanjori and badampahar groups, singhbhum craton, Eastern India: Implications for tectonic setting and archean-proterozoic boundary. Journal of Sedimentary Environment, 6, 447–472.

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript is the result of the Geological Survey of India (GSI)’s Annual Field Season Project id FSP Code: RP/NER/MNG/2015/006. The authors would like to thank the Additional Director General & HoD, GSI, NER, Shillong, for his encouragement in submitting the manuscript and the Deputy Director General, GSI, SU: Manipur – Nagaland, for administrative and technical support during the execution of the project. Special thanks to the officers of Chemical Laboratory, GSI Shillong and GSI, Kolkata, for the chemical analysis of samples for this work. JP also thanks the officers of Geochronology and Isotope Geology Division, GSI, CHQ Kolkata, for their support and help during the Zircon U-Pb analysis.

Author information

Authors and Affiliations

Authors

Contributions

CS: fieldwork, geochemistry and U–Pb sample collection and processing, interpretation and initial manuscript writing. JP: U-Pb sample processing and analysis, interpretation, initial manuscript writing, finalisation and revision. SV: field work, geochemistry and U–Pb sample collection and processing, interpretation and initial manuscript writing. LSS: initial manuscript writing. CDS: supervision of the project, fieldwork, manuscript finalisation and revision. VS: interpretation and initial manuscript writing.

Corresponding author

Correspondence to James Pebam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. V. Alves Martins

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 486 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shijoh, C., Pebam, J., Vales, S. et al. Geochemistry and detrital geochronology of sandstones of Barail Group of Indo-Myanmar Range, NE India. J. Sediment. Environ. 8, 471–490 (2023). https://doi.org/10.1007/s43217-023-00142-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00142-w

Keywords

Navigation