Skip to main content
Log in

A re-classification of Precambrian cherts: implication on diagenetic origin of chert concretion, nodule and geode

  • Review
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The term ‘chert’ ideally refers to fine-grained siliceous (micro/cryptocrystalline) mineral and is also often used for rock with such siliceous mineral aggregate of chemical, biochemical, and organic origin. Petrologically, inorganic non-sedimentary origin or even volcanic derivatives formed by devitrification of metastable felsic volcanic glass can also be included within chert. A new classification scheme for Precambrian cherts is proposed, especially for field workers. Despite several worldwide studies on chert, simple comprehensive classification of chert is not available to date. There are notable differences amongst Archaean, Palaeoproterozoic and Meso-Neoproterozoic cherts. This paper reviews all the Precambrian cherts to divide them into three categories from global context. Archaean and Palaeoproterozoic cherts mostly imply precipitation from silica gel material supplied vide submarine volcanism. This paper also focuses on diagenetic chert concretion, nodules, and geodes in detail. Finally, the Mesoproterozoic Nagari Formation in Cuddapah Basin, India is shown as a case to explain the diagenetic conditions, which could favour chert development by silica supersaturation in the pores. Diagenetic sub-environments are categorized systematically as eogenetic, mesogenetic, and telogenetic types with evidences of each based on photomicrography and outcrop studies. A comprehensive analysis is attempted to understand the development of concretions, nodules and geodes due to diagenesis with respect to the Eastern Ghats Orogeny, which has played a significant role in the prominent development of diagenetic features during mesodiagenetic and telodiagenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data are made available in this paper. There is no additional data available.

References

  • Abouchami, W., & Boher, M. (1990). A major 2.1 Ga event of mafic magmatism in West Africa: An early stage of crustal accretion. Journal of Geophysical Research, 95(B11), 17605–17629.

    Article  Google Scholar 

  • Altermann, W. (2001). The oldest fossils of Africa: A brief reappraisal of reports from the Archean. Journal of African Earth Sciences, 33(3), 427–436. https://doi.org/10.1016/S0899-5362(01)00089-6

    Article  Google Scholar 

  • Awramik, S. M., Schopf, J. W., & Walter, M. R. (1983). Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Research, 20, 357–374.

    Article  Google Scholar 

  • Bailie, R., Gutzmer, J., & Rajesh, H. M. (2011). Petrography, geochemistry and geochronology of the metavolcanic rocks of the Mesoproterozoic Leerkrans Formation, Wilgenhoutsdrif Group, South Africa—back-arc basinto the Areachap volcanic arc. South African Journal of Geology, 114(2), 167–194.

    Article  Google Scholar 

  • Barghoorn, E. S., & Tyler, S. A. (1965). Microorganisms of middle Precambrian age from the Animikie series. Current Aspects of Exobiology, 3, 93–118.

    Article  Google Scholar 

  • Bateman, A. M. (1950). Economic mineral deposits (2nd ed.). New York: Wiley.

    Google Scholar 

  • Behl, R., & Garrison, R. E. (1994). The origin of chert in the Monterey Formation of California (USA). In A. Iijima, A. Abed, & R. Garrison (Eds.), Siliceous, phosphatic and glauconitic sediments of the tertiary and mesozoic, Part C (pp. 101–132). International Geological Congress Proceedings.

    Google Scholar 

  • Birnbaum, S. J., & Wireman, J. W. (1985). Sulfate-reducing bacteria and silica solubility: A possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations. In Role of Organisms and Organic Matter in Ore Deposition–Le role des organisms et de la matiere organique dans la formation des gisements metalliferes (eds. R. W. Macqueen and J. A. Coope). Canadian Journal Earth Science, 22(12), 1904–1909.

    Article  Google Scholar 

  • Boggs, S. (2006). Principles of sedimentology and stratigraphy (4th ed., pp. 208–210). Pearson Prentice Hall.

    Google Scholar 

  • Bohrmann, G., Abelmann, A., Gersonde, R., Hubberten, H., & Kuhn, G. (1994). Pure siliceous ooze, a diagenetic environment for early chert formation. Geology, 22(3), 207–210.

    Article  Google Scholar 

  • Bonde, S. D., & Kumaran, K. P. N. (2002). The oldest macrofossil record of the mangrove fern Acrostichum L. from the Late Cretaceous Deccan Intertrappean beds of India. Cretaceous Research, 23(1), 149–152.

    Article  Google Scholar 

  • Brandl, M. (2014). Genesis, provenance and classification of rocks within the Chert Group in Central Europe. Archaeologia Austriaca, 98, 33–58.

    Google Scholar 

  • Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., & Grassineau, N. V. (2002). Questioning evidence for Earth’s oldest fossils. Nature, 416, 76–81.

    Article  Google Scholar 

  • Breitkoff, J. H., & Maiden, K. J. (1988). Tectonic setting of the Matchless Belt pyrite copper deposits, Namibia. Economic Geology, 83, 710–723.

    Article  Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R., & Summons, R. E. (1999). Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036.

    Article  Google Scholar 

  • Bruce, M. C., Niu, Y., Harbort, T. A., & Holcombe, R. J. (2000). Petrological, geochemical and geochronological evidence for a Neoproterozoic ocean basin recorded in the Marlborough terrane of the northern New England Fold Belt. Australian Journal of Earth Sciences, 47, 1053–1064.

    Article  Google Scholar 

  • Buick, R. (1990). Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 m.y, chert-barite unit at north pole, Western Australia. Palaios, 5, 441–459.

    Article  Google Scholar 

  • Cady, L., & Farmer, J. D. (1996). Fossilization processes in siliceous thermal springs: Trends in preservation along thermal gradients. In Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (pp. 150–173). Wiley.

    Google Scholar 

  • Choquette, P. W., & Pray, L. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association Petroleum Geologists Bulletin, 54, 207–250.

    Google Scholar 

  • Condie, K. C., & Myers, J. S. (1999). Mesoproterozoic fraser complex: Geochemical evidence for multiple subduction-related sources of lower crustal rocks in the Albany-Fraser Orogen, Western Australia. Australian Journal of Earth Sciences, 46, 875–882.

    Article  Google Scholar 

  • Cressman, E. R. (1962). Nondetrital Siliceous Sediments, Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence. Data of geochemistry, Geological survey professional paper 440-T, 6ed, United States Government Printing Office, Washington.

  • De Gregorio, B. T. & Sharp, T. G. (2003). Determining the biogenicity of microfossils in the Apex chert, Western Australia, using transmission electron microscopy. Lunar and Planetary Science XXXIV

  • Duda, R., & Rejl, L. (1990). Minerals of the world. Arch Cape Press.

    Google Scholar 

  • Dymek, R., & Klein, C. (1988). Chemistry, petrology, and origin of banded iron-formation lithologies from the 3,800 Ma Isua Supracrustal Belt, West Greenland. Precambrian Research, 39, 247–302.

    Article  Google Scholar 

  • Ewers, W. E. (1983). Chemical factors in the deposition and diagenesis of banded iron-formation. In A. F. Trendall & R. C. Morris (Eds.), Iron-formations: Facts and problems (pp. 491–512). Elsevier.

    Chapter  Google Scholar 

  • Fleming, B. A., & Crerar, D. A. (1982). Silicic acid ionization and calculation of silica solubility at elevated temperature and pH, application to geothermal fluid processing and reinjection. Geothermics, 11(1), 15–29.

    Article  Google Scholar 

  • Folk, R. L. (1980). Petrology of sedimentary rocks (p. 185). Hemphill Publishing Company.

    Google Scholar 

  • Furnes, H., Dilek, Y., & de Wit, M. (2015). Precambrian greenstone sequences represent different ophiolite types. Gondwana Research, 27(2), 649–685. https://doi.org/10.1016/j.gr.2013.06.004

    Article  Google Scholar 

  • Golubic, S., & Seong-Joo, L. (1999). Early cyanobacterial fossil record: Preservation, palaeoenvironments and identification. European Journal of Phycology, 34, 339–348.

    Article  Google Scholar 

  • Goswami, S., & Dey, S. (2018). Facies analysis of tuffaceous volcaniclastics and felsic volcanics of Tadpatri Formation, Cuddapah basin, Andhra Pradesh, India. International Journal of Earth Sciences (geol Rundsch). https://doi.org/10.1007/s00531-018-1620-z

    Article  Google Scholar 

  • Goswami, S., Dey, S., Zakaulla, S., & Verma, M. B. (2020). Active rifting and bimodal volcanism in Proterozoic Papaghni sub-basin, Cuddapah basin (Andhra Pradesh), India. Journal of Earth System Science, 129, 21. https://doi.org/10.1007/s12040-019-1278-3

    Article  Google Scholar 

  • Goswami, S., Maurya, V. K., Tiwari, R. P., Swain, S., & Verma, M. B. (2019). Structural analysis of T Sundupalle greenstone belt and surrounding granitoids, Andhra Pradesh, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-019-4793-2

    Article  Google Scholar 

  • Goswami, S., Purnajit, B., Sangeeta, B., Suresh, K., & Syed, Z. (2015). Petrography of chert nodules in stromatolitic dolostone of Vempalle Formation, along Tummalapalle—Motnutalapalle, Cuddapah Basin, India. Indian Journal of Geosciences, 69, 13–24. ISSN 03795128.

    Google Scholar 

  • Goswami, S., Sivasubramaniam, R., Bhagat, S., Suresh, K., & Sarbajna, C. (2016). Algoma type BIF and associated submarine volcano-sedimentary sequence in Ramagiri granite-greenstone terrain, Andhra Pradesh, India. Journal of Applied Geochemistry, 18(2), 155–169. ISSN: 0972-1967.

    Google Scholar 

  • Goswami, S. & Upadhyay, P. K. (2019). Tectonic history of the granitoids and Kadiri schist belt in the SW of Cuddapah basin, Andhra Pradesh, India. In S. Mukherjee (Ed.), Tectonics and Structural Geology: Indian Context. Springer Nature. https://doi.org/10.1007/978-3-319-99341-6_8. (ISBN: 978-3-319-99340-9)

  • Goswami, S., Upadhyay, P. K., Bhagat, S., Zakaulla, S., Bhatt, A. K., Natarajan, V., & Dey, S. (2018). An approach of understanding acid volcanics and tuffaceous volcaniclastics from field studies: A case from Tadpatri Formation, Proterozoic Cuddapah basin, Andhra Pradesh, India. Journal of Earth System Science, 127, 20. https://doi.org/10.1007/s12040-018-0929-0

    Article  Google Scholar 

  • Goswami, S., Upadhayay, P. K., Bhattacharjee, P., & Murugan, M. G. (2017). Tectonic setting of the Kadiri schist belt, Andhra Pradesh, India. Acta Geologica Sinica (english Edition) (wiley and Geological Society of China), 91(6), 1992–2006.

    Article  Google Scholar 

  • Gross, G. A. (1973). Primary features in cherty iron formations. Sedimentary Geology, 2, 241–261.

  • Grotzinger, J. P., & Kasting, J. F. (1993). New constraints on Precambrian ocean composition. The Journal of Geology, 101, 235–243.

    Article  Google Scholar 

  • Harper, G. D. (1985). Dismembered Archean ophiolite, Wind River Mountains, Wyoming (U.S.A.). Ofioliti 10 (2/3), 297–306.

  • Hefferan, K., & O’Brien, J. (2010). Earth materials. Wiley. ISBN 978-1-4051-4433-9.

    Google Scholar 

  • Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society: Biological Sciences, 361(1470), 903–915. https://doi.org/10.1098/rstb.2006.1838.PMC1578726.PMID16754606

    Article  Google Scholar 

  • Holmden, C., & Muehlenbachs, K. (1993). The 18O/16O ratio of 2-billion-year-old seawater inferred from ancient oceanic crust. Science, 259, 1733–1736.

    Article  Google Scholar 

  • House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., & Stetter, K. O. (2000). Carbon isotopic composition of individual Precambrian microfossils. Geology, 28, 707–710.

    Article  Google Scholar 

  • Jacobsen, S. B., & Kaufman, A. J. (1999). The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology, 161, 37–57.

    Article  Google Scholar 

  • Kastner, M., Keene, J. B., & Gieskes, J. M. (1977). Diagenesis of siliceous oozes: 1. Chemical controls on the rate of opal-A to opal-CT transformation: Aan experimental study. Geochimica Et Cosmochimica Acta, 41, 1041–1059.

    Article  Google Scholar 

  • Klein, C., & Beukes, N. J. (1989). Geochemistry and sedimentology of a facies transition from limestone to iron formation deposition in the Early Proterozoic Transvaal Supergroup, South Africa. Economic Geology, 84, 1733–1774.

    Article  Google Scholar 

  • Klemd, R., Maiden, K. J., Okrusch, M., & Richter, P. (1989). Geochemistry of the Matchless metamorphosed massive sulfide deposits, South West Africa/Namibia: Wall–rock alteration during submarine ore-forming processes. Economic Geology, 84, 603–617.

    Article  Google Scholar 

  • Knauth, L. P. (1994). Petrogenesis of Chert. In P. J. Heaney, C. T. Prewitt, & G. V. Gibbs (Eds.), Silica: Physical Behavior, Geochemistry and Materials Applications (pp. 233–258). Mineralogical Society of America.

    Chapter  Google Scholar 

  • Knauth, L. P., & Lowe, D. R. (1978). Oxygen isotope geochemistry of cherts from onverwacht group (3.4 billion years), Transvaal, South-Africa, with implications for secular variations in isotopic composition of cherts. Earth and Planetary Science Letters, 41, 209–222.

    Article  Google Scholar 

  • Kotyk, M. E., Basinger, J. F., Gensel, P. G., & de Freitas, T. A. (2002). Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada. American Journal of Botany, 89(6), 1004–1013.

    Article  Google Scholar 

  • Kounov, A., Graf, J., von Quadt, A., Bernoulli, D., Burg, J.-P., Seward, D., Ivanov, Z., & Fanning, M. (2012). Evidence for a “Cadomian” ophiolite and magmatic-arc complex in SW Bulgaria. Precambrian Research, 212–213, 275–295.

    Article  Google Scholar 

  • Kramers, J. D., Henzen, M., & Steidle, L. (2014). Greenstone belts at the northernmost edge of the Kaapvaal Craton: Timing of tectonic events and a possible crustal fluid source. Precambrian Research, 253, 96–113. https://doi.org/10.1016/j.precamres.2014.06.008

    Article  Google Scholar 

  • Laschet, C. (1984). On the origin of cherts. Facies, 10, 257–290. https://doi.org/10.1007/BF02536693

    Article  Google Scholar 

  • Lehtonen, M., Airo, M.L., Eilu, P., Hanski, E., Kortelainen, V., Lanne, E., Manninen, T., Rastas, P., Räsänen, J. & Virransalo, P. (1998) The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland: A report of the Lapland Volcanite Project. Geol Surv Finl Rep Invest 140 (in Finnish with English summary).

  • Lobato, L. M., Ribeiro-Rodrigues, L. C., Zucchetti, M., Noce, C. M., Baltazar, O. F., Silva, L. C., & Pinto, C. P. (2001). Brazil’s premier gold province: Part I. The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineralium Deposita, 36, 228–248.

    Article  Google Scholar 

  • Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506(7488), 307–315. https://doi.org/10.1038/nature13068

    Article  Google Scholar 

  • Maliva, R. G. (2001). Silicification in the Belt Supergroup (Mesoproterozoic) Glacier National Park, Montana, USA. Sedimentology, 48, 887–896.

    Article  Google Scholar 

  • Maliva, R. G., Knoll, A. H., & Siever, R. (1989). Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios, 4, 519–532.

    Article  Google Scholar 

  • Maliva, R. G., & Siever, R. (1989). Nodular Chert Formation in Carbonate Rocks. Journal of Geology, 97(4), 421–433.

    Article  Google Scholar 

  • Manikyamba, C., Kerrich, R., Naqvi, S. M., & Mekala, R. M. (2004). Geochemical systematics of tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar craton. Precambrian Research, 134(1), 21–39. https://doi.org/10.1016/j.precamres.2004.05.010

    Article  Google Scholar 

  • Marin, J., Chaussidon, M., & Robert, F. (2010). Microscale oxygen isotope variations in 1.9 Ga Gunflint cherts: Assessments of diagenesis effects and implications for oceanic paleotemperature reconstructions. Geochimica Et Cosmochimica Acta, 74, 116–130.

    Article  Google Scholar 

  • Marin-Carbonne, J., Chaussidon, M., & Robert, F. (2012). Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochimica Et Cosmochimica Acta, 92, 129–147.

    Article  Google Scholar 

  • Marin-Carbonne, J., Faure, F., Chaussidon, M., Jacob, D., & Robert, F. (2013). A petrographic and isotopic criterion of the state of preservation of Precambrian cherts based on the characterization of the quartz veins. Precambrian Research, 231, 290–300.

    Article  Google Scholar 

  • Melnik, Y. P. (1982). Precambrian banded iron formation: Physiochemical conditions of formation (p. 310). Elsevier.

    Google Scholar 

  • Morris, R. C. (1993). Genetic modeling for banded iron formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research, 60, 243–286.

    Article  Google Scholar 

  • Muehlenbachs, K., & Clayton, R. N. (1976). Oxygen isotope composition of the oceanic crust and its bearing on seawater. Journal of Geophysical Research, 81(23), 4365–4369.

    Article  Google Scholar 

  • Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S., & Mukherjee, T. (2012). A 3.51 Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum Craton: Implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geological Journal, 47, 284–311.

    Article  Google Scholar 

  • O'Driscoll, C. F., Dean, M. T., Wilton, D. H. C. & Hinchey, J. G. (2001). The Burin Group: a Late Neoproterozoic ophiolite containing shear zone-hosted mesothermal-style gold mineralization in the Avalon Zone, Burin Peninsula, Newfoundland. Current research. Geol. Surv. Branch Rept., 1. Dept. Mines Energy, Nfld, pp. 229–246.

  • Peltonen, P., Kontinen, A., Huhma, H., & Kuronen, U. (2008). Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits. Ore Geology Reviews, 33, 559–617.

    Article  Google Scholar 

  • Perry, E. C. (1967). The oxygen isotopes chemistry of ancient cherts. Earth and Planetary Science Letters, 3, 62–66.

    Article  Google Scholar 

  • Perry, E. C., Ahmad, S. N., & Swulius, T. M. (1978). The oxygen isotope composition of 3800 m.y. old metamorphosed chert and iron formation from Isukasia, West Greenland. Journal of Geology, 86, 223–239.

    Article  Google Scholar 

  • Perry, E. C., Jr., & Lefticariu, L. (2003). Formation and Geochemistry of Precambrian cherts. In F. T. Mackenzie (Ed.), Treatise on Geochemistry (pp. 99–113). New York: Elsevier.

    Google Scholar 

  • Perry, E. C., & Tan, F. C. (1972). Significance of oxygen and carbon isotope variations in Early Precambrian cherts and carbonate rocks of southern Africa. GSA Bulletin, 83, 647–664.

    Article  Google Scholar 

  • Perry, E. C., Tan, F. C., & Morey, G. B. (1973). Geology and stable isotope geochemistry of the Biwabik Iron Formation, northern Minnesota. Economic Geology, 68, 1110–1125.

    Article  Google Scholar 

  • Pinti, D. L., & Altermann, W., et al. (2015). Apex Chert, microfossils. In M. Gargaud (Ed.), Encyclopedia of astrobiology. Springer. https://doi.org/10.1007/978-3-662-44185-5_1866

    Chapter  Google Scholar 

  • Pirajno, F., Occhipinti, S. A., & Swager, C. P. (1998). Geology and tectonic evolution of the Palaeoproterozoic Bryah, Padbury and Yerrida Basins (formerly Glengarry Basin), Western Australia: Implications for the history of the south-central Capricorn Orogen. Precambrian Research, 90, 119–140.

    Article  Google Scholar 

  • Polat, A., & Hofmann, A. W. (2003). Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126, 197–218.

    Article  Google Scholar 

  • Polat, A., Hofmann, A. W., & Rosing, M. (2002). Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: Geochemical evidence of intra-oceanic subduction processes in the early Earth. Chemical Geology, 184, 231–254.

    Article  Google Scholar 

  • Porter, S. M., & Knoll, A. H. (2000). Testate amoebae in the Neoproterozoic era: Evidence from vase-shaped microfossils in the Chuar Group, Gran Canyon. Paleobiology, 26, 360–385.

    Article  Google Scholar 

  • Puchtel, I. S., Hofmann, A. W., Jochum, K. P., Mezger, K., Shchipansky, A. A., & Samsonov, A. V. (1997). The Kostomuksha greenstone belt, NW Baltic Shield: Remnant of a late Archaean oceanic plateau? Terra Nova, 9(2), 87–90. https://doi.org/10.1111/j.1365-3121.1997.tb00009.x

    Article  Google Scholar 

  • Ramos, V. A., Escayola, M., Mutti, D. I. & Vujovich, G. I. (2000). Proterozoic-early Paleozoic ophiolites of the Andean basement of southern South America. In: Dilek, Y., Moores, E. M., Elthon, D., Nicolas, A. (Eds.) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Boulder, Colorado, Geological Society of America, Special Paper, (Vol. 349, pp. 331–349).

  • Renner, R., & Gibbs, A. K. (1987). Geochemistry and petrology of metavolcanic rocks of the early Proterozoic Mazaruni greenstone belt, northern Guyana. In: Pharaoh, T. C., Beckinsale, R. D., Rickard, D. (Eds.), Geochemistry and Mineralization of Proterozoic Volcanic Rocks. Geological Society, Special Publication, Vol. 33, pp. 289–309.

  • Robert, F., & Chaussidon, M. (2006). A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature, 443, 969–972.

    Article  Google Scholar 

  • Saha, D., & Tripathy, V. (2012). Palaeoproterozoic sedimentation in the Cuddapah Basin, south India and regional tectonics: a review. Geological Society, London, Special Publications, 365, 161–184.

    Article  Google Scholar 

  • Schopf, J. W. (1968). Microflora of the bitter springs formation, late Precambrian, central Australia. Journal of Paleontology, 42(3), 651–688.

    Google Scholar 

  • Schopf, J. W. (1992). Atlas of representative Proterozoic microfossils. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere: A multidisciplinary study (pp. 1055–1117). Cambridge University Press.

    Chapter  Google Scholar 

  • Schopf, J. W. (1993). Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life. Science, 260, 640–646.

    Article  Google Scholar 

  • Schopf J. W., & Barghoorn, E. S. (1967). Alga-like fossils from the early Precambrian of South Africa. Science, 156(3774), 508–512. http://www.jstor.org/stable/1721235

  • Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., & Czaja, A. D. (2002). Laser-Raman imagery of Earth’s earliest fossils. Nature, 416, 73–76.

    Article  Google Scholar 

  • Schopf, J. W., & Packer, B. M. (1987). Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237, 70–73.

    Article  Google Scholar 

  • Shamim Khan, M., Smith, T. E., Raza, M., & Huang, J. (2005). Geology, geochemistry and tectonic significance of mafic–ultramafic rocks of Mesoproterozoic Phulad ophiolite suite of South Delhi Fold Belt, NW Indian Shield. Gondwana Research, 8(4), 553–566.

    Article  Google Scholar 

  • Sharma, M. (2008). Stromatolites studies in India: An overview. The Palaeobotanist 57, 63–67. Challenges in Indian Palaeobiology: Current Status, Recent Development and Future Directions. Editors: N.C. Mehrotra & Mukund Sharma Publisher: Birbal Sahni Institute of Palaeobotany, Lucknow. © Birbal Sahni Institute of Palaeobotany, India, 0031-0174/2008

  • Sharma, M., & Shukla, M. (1998). Microstructure and microfabric studies of Palaeoproterozoic small digitate stromatolites (Ministromatolites) from the Vempalle Formation, Cuddapah Supergroup, India. Journal of Palaeontological Society of India, 43, 89–100.

    Google Scholar 

  • Sharma, M. & Shukla, M. (2003). Studies in Palaeo-Mesoproterozoic stromatolites from the Vempalle and Tadpatri formations of Cuddapah Supergroup, India. Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives Professor D.D. Pant Memorial Volume P.C. Srivastava (ed.) 2003: 1–25

  • Siever, R. (1992). The silica cycle in the Precambrian. Geochimica Et Cosmochimica Acta, 56, 3265–3272.

    Article  Google Scholar 

  • Simonson, B. M., & Hassler, S. W. (1996). Was the deposition of large Precambrian iron formations linked to major marine transgressions? The Journal of Geology, 104, 665–676.

    Article  Google Scholar 

  • Simonson, B. M., Schubel, K. A., & Hassler, S. W. (1993). Carbonate sedimentology of the Early Precambrian Hamersley Group, Western Australia. Precambrian Research, 60, 287–335.

    Article  Google Scholar 

  • Skruf’in, P. K., & Theart, H. F. J. (2005). Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola Greenstone Belt, Russia. Precambrian Research, 141, 1–48.

    Article  Google Scholar 

  • Smith, W. E. (1950). The origin of chert and flint. Dissertation © ProQuest LLO, 789 East Eisenhower Parkway, ProQuest Number: 10762412

  • Smith, T. E., & Harris, M. J. (1996). The Queensborough mafic–ultramafic complex: A fragment of a Meso-Proterozoic ophiolite? Grenville Province, Canada. Tectonophysics, 265, 53–82.

    Article  Google Scholar 

  • Southgate, P. (1986). Depositional environment and preservation of microfossils, upper Proterozoic Bitter Springs Formation, Australia. Geology, 14, 683–686.

    Article  Google Scholar 

  • Stern, R. A., Syme, E. C., Bailes, A. H., & Lucas, S. B. (1995). Paleoproterozoic (1.90–1.86 Ga) arc volcanism in the Flin Flon Belt, Trans-Hudson Orogen, Canada. Contributions to Mineralogy and Petrology, 119, 117–141.

    Article  Google Scholar 

  • Sugitani, K., Yamamoto, K., Adachi, M., Kawabe, I., & Sugisaki, R. (1998). Archean cherts derived from chemical, biogenic and clastic sedimentation in a shallow restricted basin: Examples from the Gorge Creek Group in the Pilbara Block. Sedimentology, 45(6), 1045–1063.

    Article  Google Scholar 

  • Sylvester, P. J., & Attoh, K. (1992). Lithostratigraphy and composition of 2.1 Ga greenstone belts of West African craton and their bearing on crustal evolution of the Archean–Proterozoic boundary. Journal of Geology, 100, 377–393.

    Article  Google Scholar 

  • Tassinari, C. C. G., Munha, J. M. U., Ribeiro, A., & Correia, C. T. (2001). Neoproterozoic oceans in the Ribeira Belt (southeastern Brazil): The Pirapora do Bom Jesus ophiolitic complex. Episodes, 24(4), 245–251.

    Article  Google Scholar 

  • Trendall A. F., Blockley, J. G. (2004). Precambrian iron-formation. In Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller, W. U., Catuneanu, O. (Eds.). Evolution of the hydrosphere and atmosphere. Developments in Precambrian geology (Vol. 12. pp. 359–511). https://doi.org/10.1016/S0166-2635(04)80007-0 (ISBN 9780444515063).

  • van den Boorn, S., van Bergen, M. J., Nijman, W., & Vroon, P. Z. (2007). Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology, 35, 939–942.

    Article  Google Scholar 

  • van den Boorn, S. H. J. M., van Bergen, M. J., Vroon, P. Z., de Vries, S. T., & Nijman, W. (2010). Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: Implications for Early Archaean marine environments. Geochimica Et Cosmochimica Acta, 74, 1077–1103.

    Article  Google Scholar 

  • Van Kranendonk, M. J., & Pirajno, P. (2004). Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: Implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia. Geochemistry Exploration Environment Analysis, 4, 253–278.

    Article  Google Scholar 

  • Veizer, J., Ala, D., & Azmy, K. (1999). 87Sr/86Sr, δ13C, δ18O evolution of Phanerozoic seawater. Chemical Geology, 161, 59–88.

    Article  Google Scholar 

  • Vidal, M., & Alric, G. (1994). The Palaeoproterozoic (Birimian) of Haute-Comoé in the West Africa Craton, Ivory Coast: A transtensional back-arc basin. Precambrian Research, 65, 207–229.

    Article  Google Scholar 

  • Volpe, A. M., & Macdougall, J. D. (1990). Geochemistry and isotope characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: Implications for rifting in the Proterozoic. Precambrian Research, 48, 167–191.

    Article  Google Scholar 

  • Vujovich, G. I., & Kay, S. M. (1998). A Laurentian? Grenville-age oceanic arc/back-arc terrane in the Sierra de Pie de Palo, Western Sierras Pampeanas, Argentina. In R. J. Pankhurst & C. W. Rapela (Eds.), The Proto-Andean Margin of Gondwana, Vol. 142 (pp. 159–179). London: Geological Society.

    Google Scholar 

  • Wacey, D., Saunders, M., Kong, C., Brasier, A., & Brasier, M. (2016). 3.46Ga Apex chert ‘microfossils’ reinterpreted as mineral artefacts produced during phyllosilicate exfoliation. Gondwana Research, 36, 296–313. https://doi.org/10.1016/j.gr.2015.07.010

    Article  Google Scholar 

  • Wilks, M. E., & Harper, G. D. (1997). Wind River Range, Wyoming Craton. In M. J. de Wit & L. D. Ashwal (Eds.), Greenstone Belts (pp. 508–516). Clarendon Press.

    Google Scholar 

  • Worden, R. H. & Burley, S. D. (2003). Sandstone diagenesis: the evolution of sand to stone. In Sandstone Diagenesis: Recent and Ancient (pp. 1–44) Chapter: 1 © International Association of Sedimentologists. https://doi.org/10.1002/9781444304459.ch. (ISBN: 978-1-405-10897-3)

  • Wyman, D. A., & Kerrich, R. (2012). Geochemical and isotopic characteristics of Youanmi terrane volcanism: The role of mantle plumes and subduction tectonics in the eastern Yilgarn Craton. Australian Journal of Earth Sciences, 59, 671–694.

    Article  Google Scholar 

  • Yanchilina, A., Yam, R., Kolodny, Y. & Shemesh, A. (2019). Marine δ18O through the Cenozoic: evidence from biogenic opal. AGUFM, PP31E-1691

  • Yellappa, T., Chetty, T. R. K., Tsunogae, T., & Santosh, M. (2010). The Manamedu Complex: Geochemical constraints onNeoproterozoic suprasubduction zone ophiolite formationwithin the Gondwana suture in southern India. Journal of Geodynamics, 50, 268–285.

    Article  Google Scholar 

  • Zucchetti, M. (2007). Rochas máficas do Grupo Grão pará e sua relação com a mineralizão de ferro dos depósitos N4eN5, Carajás, PA. (Ph.D. thesis).

  • Zuilen, M. A. V., Chaussidon, M., Bard, C. R., & Marty, B. (2007). Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: isotopic, chemical and structural characteristics of individual microstructures. Geochimica Et Cosmochimica Acta, 71(3), 655–669. https://doi.org/10.1016/j.gca.2006.09.029

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Director AMD for assistance in creating the original work under positive circumstances. All fellow colleagues are duly acknowledged especially whoever indirectly extended their moral support, editorial support, presentational support, instrumental/technical supports.

Author information

Authors and Affiliations

Authors

Contributions

Sukanta Goswami: Contributed throughout the manuscript including field works, conceptualization, MS preparation, Preliminary proofing and extensive review. Sangeeta Bhagat: Petrographic part Vinod Kumar Maurya: Field traverses. literature survey and supported in MS preparation with technical discussion. Purnajit Bharttacharjee: Technical discussion and literature review D. K. Choudhury: Logistic supports, literature review and technical discussion, proofing

Corresponding author

Correspondence to Sukanta Goswami.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, S., Bhagat, S., Maurya, V.K. et al. A re-classification of Precambrian cherts: implication on diagenetic origin of chert concretion, nodule and geode. J. Sediment. Environ. 8, 339–361 (2023). https://doi.org/10.1007/s43217-023-00137-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00137-7

Keywords

Navigation