Skip to main content

Advertisement

Log in

Climate-induced changes in fluvial ichnofossil assemblages of the Pennsylvanian–Permian Appalachian Basin

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The long-term response of riparian communities to shifting climatic conditions can be addressed by the ichnofossil record, because organism behavior is typically altered in response to changes in environmental factors. During the late Paleozoic, the Appalachian Basin experienced a shift from an ever-wet to wet–dry climate. Changes in the abundance, diversity, density, and composition of ichnofossil assemblages were investigated in fluvial point bar sandstones from five roadside outcrops of the Middle Pennsylvanian-to-early Permian Allegheny, Conemaugh, Monongahela, and Dunkard groups located in southeast Ohio and northwest West Virginia. Ichnofossil data were collected using a 0.5 × 0.5-m grid placed on bedding plane surfaces and from vertically oriented thin sections. Abundance, density, diversity, and burrow widths increased through the study interval. Behaviors changed from stationary- to mobile-deposit feeding, while community composition shifted toward more established, permanent generalists. These changes in ichnofossil assemblages suggest that the shift to a drier, more pronounced seasonal climate made short- to long-term occupation of the point bar sands more advantageous as surface conditions were more unfavorable and resources limited. This study helps us understand how terrestrial community composition and ecosystem dynamics shift over long time intervals in response to environmental perturbations. By assessing these changes, we can better predict what future impacts climatic shifts will have on continental ecosystems and terrestrial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data collected are available in the tables and appendices.

Code availability

Statistical analyses were performed using PAST version 3, free software available at https://folk.uio.no/ohammer/past/.

References

  • Aslan, A., & Autin, W. J. (1998). Holocene flood-plain soil formation in the southern lower Mississippi Valley: Implications for interpreting alluvial paleosols. Geological Society of America Bulletin, 110(4), 433–449.

    Article  Google Scholar 

  • Beatty, T. W., Zonneveld, J. P., & Henderson, C. M. (2008). Anomalously diverse Early Triassic ichnofossil assemblages in northwest Pangea: A case for a shallow-marine habitable zone. Geology, 36(10), 771–774.

    Article  Google Scholar 

  • Blakey, R.C. (2008). Gondwana paleogeography from assembly to breakup—a 500 my odyssey. In C. R. Fielding, T. D. Frank, & J. L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in time and space. Geological Society of America. pp. 1–28

  • Boyce, C. K., & Lee, J. E. (2010). An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity. Proceedings. Biological Sciences, 277(1699), 3437–3443. https://doi.org/10.1098/rspb.2010.0485

    Article  Google Scholar 

  • Brezinski, D. K., & Kollar, A. D. (2011). Pennsylvanian climatic events and their congruent biotic responses in the central Appalachian Basin. Field Guides, 20, 45–60.

    Google Scholar 

  • Brierley, G. J., Ferguson, R. J., & Woolfe, K. J. (1997). What is a fluvial levee? Sedimentary Geology, 114(1–4), 1–9.

    Article  Google Scholar 

  • Bromley, R. G. (1996). Trace fossils: Biology, taphonomy and applications. Chapman and Hall.

    Book  Google Scholar 

  • Buatois, L. A., & Mángano, M. A. (2004). Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. In D. Mcllroy (Ed.), The application of ichnology to palaeoenvironmental and stratigraphic analysis (Vol. 228, pp. 311–334). Geological Society Special Publication, Geological Society of London.

    Google Scholar 

  • Buatois, L., & Mángano, M. G. (2011). Ichnology: organism-substrate interactions in space and time. Cambridge University Press.

    Book  Google Scholar 

  • Buatois, L. A., Mángano, M. G., Genise, J. F., & Taylor, T. N. (1998). The ichnologic record of the continental invertebrate invasion; evolutionary trends in environmental expansion, ecospace utilization, and behavioral complexity. Palaios, 13(3), 217–240.

    Article  Google Scholar 

  • Cadée, G. C. (1984). ‘Opportunistic feeding’, a serious pitfall in trophic structure analysis of (paleo) faunas. Lethaia, 17(4), 289–292.

    Article  Google Scholar 

  • Capon, S. J., Chambers, L. E., Mac Nally, R., Naiman, R. J., Davies, P., Marshall, N., Pittock, J., Reid, M., Capon, T., Douglas, M., Catford, J., Baldwin, D. S., Stewardson, M., Roberts, J., Parsons, M., & Williams, S. E. (2013). Riparian ecosystems in the 21st century: Hotspots for climate change adaptation? Ecosystems, 16(3), 359–381.

    Article  Google Scholar 

  • Catena, A., & Hembree, D. (2012). Recognizing vertical and lateral variability in terrestrial landscapes: A case study from the paleosols of the Late Pennsylvanian Casselman Formation (Conemaugh Group) southeast Ohio, USA. Geosciences, 2(4), 178–202.

    Article  Google Scholar 

  • Cecil, C. B. (2013). An overview and interpretation of autocyclic and allocyclic processes and the accumulation of strata during the Pennsylvanian–Permian transition in the central Appalachian Basin, USA. International Journal of Coal Geology, 119, 21–31.

    Article  Google Scholar 

  • Cecil, C. B., Stanton, R. W., Neuzil, S. G., Dulong, F. T., Ruppert, L. F., & Pierce, B. S. (1985). Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA). International Journal of Coal Geology, 5(1–2), 195–230.

    Article  Google Scholar 

  • Cecil, C. B., Brezinski, D. K., & Dulong, F. (2004). The Paleozoic record of changes in global climate and sea level: Central Appalachian Basin (Vol. 1264, pp. 77–133). Geology of the national capital region—Field trip guidebook: US Geological Survey Circular.

    Google Scholar 

  • Chan, E. K., Yu, Y. T., Zhang, Y., & Dudgeon, D. (2008). Distribution patterns of birds and insect prey in a tropical riparian forest. Biotropica, 40(5), 623–629.

    Article  Google Scholar 

  • Cloudsley-Thompson, J. L. (1975). Adaptations of Arthropoda to arid environments. Annual Review of Entomology, 20(1), 261–283.

    Article  Google Scholar 

  • Collinson, J. D. (1996). Alluvial sediments. In H. G. Reading (Ed.), Sedimentary environments: Processes, facies, and stratigraphy (pp. 37–82). Wiley.

    Google Scholar 

  • Condit, D. D. (1912). The Conemaugh formation in Ohio. Ohio Geological Survey 4th Series. Bulletin, 17, 363.

    Google Scholar 

  • Condron, L., Stark, C., O’Callaghan, M., Clinton, P., & Huang, Z. (2010). The role of microbial communities in the formation and decomposition of soil organic matter. In G. R. Dixon & E. L. Tilston (Eds.), Soil microbiology and sustainable crop production (pp. 81–118). Springer.

    Chapter  Google Scholar 

  • Crowell, J. C. (1995). The ending of the late Paleozoic ice age during the Permian Period. In P. A. Scholle, T. M. Peryt, & D. S. Ulmer-Scholle (Eds.), The Permian of Northern Pangea (pp. 62–74). Springer.

    Chapter  Google Scholar 

  • DiMichele, W. A. (2014). Wetland-dryland vegetational dynamics in the Pennsylvanian ice age tropics. International Journal of Plant Sciences, 175(2), 123–164.

    Article  Google Scholar 

  • DiMichele, W. A., Pfefferkorn, H. W., & Phillips, T. L. (1996). Persistence of Late Carboniferous tropical vegetation during glacially driven climatic and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 125, 105–128.

    Article  Google Scholar 

  • DiMichele, W. A., Montañez, I. P., Poulsen, C. J., & Tabor, N. J. (2009). Climate and vegetational regime shifts in the late Paleozoic ice age earth. Geobiology, 7(2), 200–226.

    Article  Google Scholar 

  • Dimmitt, M. A. (2000). Biomes and communities of the Sonoran Desert Region. In S. J. Phillips & P. WentworthComus (Eds.), A natural history of the Sonoran Desert: Tucson, AZ, US, Arizona-Sonora Desert (pp. 3–18). Museum Press.

    Google Scholar 

  • Dunkard Group, Pennsylvania-West Virginia-Ohio, USA. Journal of Coal Geology, 119, 79–87.

  • Dzenowski, N. D., & Hembree, D. I. (2014). The neoichnology of two terrestrial ambystomatid salamanders: Quantifying amphibian burrows using modern analogs. In D. I. Hembree, B. F. Platt, & J. J. Smith (Eds.), Experimental approaches to understanding fossil organisms (pp. 305–341). Springer.

    Chapter  Google Scholar 

  • Ekdale, A. A. (1985). Paleoecology of the marine endobenthos. Palaeogeography, Palaeoclimatology, Palaeoecology, 50(1), 63–81.

    Article  Google Scholar 

  • Erwin, D. H. (2009). Climate as a driver of evolutionary change. Current Biology, 19(14), R575–R583.

    Article  Google Scholar 

  • Fedorko, N., & Skema, V. (2013). A review of the stratigraphy and stratigraphic nomenclature of the Dunkard Group in West Virginia and Pennsylvania, USA. International Journal of Coal Geology, 119, 2–20.

    Article  Google Scholar 

  • Ferm, J. C. (1970). Allegheny deltaic deposits. In J. P. Morgan & R. H. Shaver (Eds.), Deltaic sedimentation, modern and ancient (Vol. 15, pp. 246–255). SEPM Special Publication Society of Economic Paleontologists and Mineralogists. https://doi.org/10.2110/pec.70.11

    Chapter  Google Scholar 

  • Frey, R. W., Pemberton, S. G., & Fagerstrom, J. A. (1984). Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and AncorichnusJournal of Paleontology, 58(2), 511–528.

  • Garcés, B. L. V., Gierlowski-Kordesch, E., & Bragonier, W. A. (1997). Pennsylvanian continental cyclothem development: No evidence of direct climatic control in the Upper Freeport Formation (Allegheny Group) of Pennsylvania (northern Appalachian Basin). Sedimentary Geology, 109(3–4), 305–319.

    Article  Google Scholar 

  • Gastaldo, R. A., DiMichele, W. A., & Pfefferkorn, H. W. (1996). Out of the icehouse into the greenhouse: a late Paleozoic analog for modern global vegetational change. GSA Today, 6, 1–7.

    Google Scholar 

  • Getty, P. R., McCarthy, T. D., Hsieh, S., & Bush, A. M. (2016). A new reconstruction of continental Treptichnus based on exceptionally preserved material from the Jurassic of Massachusetts. Journal of Paleontology, 90(2), 269–278.

    Article  Google Scholar 

  • Gingras, M. K., Bann, K. L., MacEachern, J. A., Waldron, J., & Pemberton, S. G. (2007). A conceptual framework for the application of trace fossils. In J. A. MacEachern, K. L. Bann, M. K. Gingras, & S. G. Pemberton (Eds.), Applied ichnology. SEPM short course notes (Vol. 52, pp. 1–26). Society for Sedimentary Geology.

    Google Scholar 

  • Häntzschel, W. (1975). Treatise on invertebrate paleontology. In P. W. Miscellanea (Ed.), Supplement 1. Trace fossils and problematica (2nd ed.). The Geological Society of America.

    Google Scholar 

  • Hasiotis, S. T. (2002). Continental trace fossils. SEPM Short Course Notes (Vol. 51). Society for Sedimentary Geology.

    Book  Google Scholar 

  • Hasiotis, S. T. (2004). Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses. Sedimentary Geology, 167(3–4), 177–268.

    Article  Google Scholar 

  • Hasiotis, S. T., & Dubiel, R. F. (1993). Continental trace fossils of the Upper Triassic Chinle Formation, Petrified Forest National Park, Arizona. The nonmarine Triassic. Bulletin of the New Mexico Museum of Natural History and Science, 3, 175–178.

    Google Scholar 

  • Hasiotis, S. T., Dubiel, R. F., & Demko, T. M. (1998). A holistic approach to reconstructing Triassic paleoecosystems: Using ichnofossils and paleosols as a basic framework. National Park Service Paleontological Research, 3, 122–124.

    Google Scholar 

  • Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007). Climatic controls on continental trace fossils. In W. Miller (Ed.), Trace fossils: Concepts, problems, prospects (pp. 172–195). Elsevier.

    Chapter  Google Scholar 

  • Hembree, D. I. (2009). Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios, 24, 425–439. https://doi.org/10.2110/palo.2008.p08-098r

    Article  Google Scholar 

  • Hembree, D. I. (2017). Neoichnology of tarantulas (Araneae: Theraphosidae): criteria for recognizing spider burrows in the fossil record. Palaeontologia Electronica. https://doi.org/10.26879/780

    Article  Google Scholar 

  • Hembree, D. (2018). The role of continental trace fossils in Cenozoic paleoenvironmental and paleoecological reconstructions. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 185–214). Springer. https://doi.org/10.1007/978-3-319-94265-0

    Chapter  Google Scholar 

  • Hembree, D. I. (2019). Burrows and ichnofabric produced by centipedes: modern and ancient examples. Palaios, 34, 468–489. https://doi.org/10.2110/palo.2019.059

    Article  Google Scholar 

  • Hembree, D. I. (2022). Early effects of the Late Paleozoic climate transition on soil ecosystems of the Appalachian Basin (Conemaugh, Monongahela, and Dunkard groups): Evidence from ichnofossils. Palaios, 37(11), 671–690. https://doi.org/10.2110/palo.2021.071

    Article  Google Scholar 

  • Hembree, D. I., & Blair, M. G. (2016). A paleopedological and ichnological approach to interpreting spatial and temporal variability in Early Permian fluvial deposits of the lower Dunkard Group, West Virginia, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 454, 246–266.

    Article  Google Scholar 

  • Hembree, D. I., & Bowen, J. J. (2017). Paleosols and ichnofossils of the Upper Pennsylvanian-Lower Permian Monongahela and Dunkard groups (Ohio, USA): A multi-proxy approach to unraveling complex variability in ancient terrestrial landscapes. Palaios, 32, 295–320.

    Article  Google Scholar 

  • Hembree, D. I., & Carnes, J. L. (2018). Response of soils and soil ecosystems to the Pennsylvanian–Permian climate transition in the upper fluvial plain of the Dunkard Basin, southeastern Ohio, USA. Geosciences, 8, 203.

    Article  Google Scholar 

  • Hembree, D. I., & McFadden, C. J. (2020). Analysis of climate and landscape change through the Pennsylvanian and Permian Monongahela and Dunkard Groups, Southeastern Ohio, USA. Journal of Sedimentary Environments, 5, 321–353.

    Article  Google Scholar 

  • Hembree, D. I., & Nadon, G. C. (2011). A paleopedologic and ichnologic perspective of the terrestrial Pennsylvanian landscape in the distal Appalachian Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 312, 138–166.

    Article  Google Scholar 

  • Hembree, D. I., Smith, J. J., Buynevich, I. V., & Platt, B. F. (2017). Neoichnology of semiarid environments: Soils and burrowing animals of the Sonoran Desert, Arizona, USA. Palaios, 32(9), 620–638.

    Article  Google Scholar 

  • Hils, J. M., & Hembree, D. I. (2015). Neoichnology of the burrowing spiders Gorgyrella inermis (Mygalomorphae: Idiopidae) and Hogna lenta (Araneomorphae: Lycosidae). Palaeontologica Electronica. https://doi.org/10.26879/500

    Article  Google Scholar 

  • Joeckel, R. M. (1995). Paleosols below the Ames Marine Unit (Upper Pennsylvanian, Conemaugh Group) in the Appalachian Basin, USA: Variability on an ancient depositional landscape. Journal of Sedimentary Research, 65(2a), 393–407.

    Google Scholar 

  • Jumars, P. A., & Wheatcroft, R. A. (1989). Responses of benthos to changing food quality and quantity, with a focus on deposit feeding and bioturbation. In W. H. Berger, V. S. Smetacek, & G. Wefer (Eds.), Productivity of the ocean: Present and past (pp. 235–253). Wiley.

    Google Scholar 

  • Kale, V. S., Patil, S. S., Satoskar, V., & Kumar, P. (1997). Occurrence of Planolites from the Nagarjuna Sagar Area, Northwestern Cuddapah Basin. Journal of Geological Society of India, 49(5), 589–596.

    Google Scholar 

  • Kondolf, G. M., Kattelmann, R., Embury, M., & Erman, D. C. (1996). Status of riparian habitat. In C. I. Millar (Ed.), Sierra Nevada Ecosystem Project: Final report to Congress (pp. 1009–1030). University of California.

    Google Scholar 

  • Koy, K., & Plotnick, R. E. (2007). Theoretical and experimental ichnology of mobile foraging. In W. Miller (Ed.), Trace fossils: Concepts, problems, prospects (pp. 428–441). Elsevier.

    Chapter  Google Scholar 

  • Lavelle, P., & Spain, A. V. (2005). Soil ecology. Springer Publishing.

    Google Scholar 

  • Lawrence, J. F., & Newton, A. F., Jr. (1982). Evolution and classification of beetles. Annual Review of Ecology and Systematics, 13(1), 261–290.

    Article  Google Scholar 

  • LeRoux, P. C., & McGeoch, M. A. (2008). Rapid range expansion and community reorganization in response to warming. Global Change Biology, 14(12), 2950–2962.

    Article  Google Scholar 

  • Lopez, G. R. & Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. The Quarterly Review of Biology62(3), 235–260. http://www.jstor.org/stable/2828974

  • Lucas, S. G. (2013). Vertebrate biostratigraphy and biochronology of the upper Paleozoic Dunkard Group, Pennsylvania-West Virginia-Ohio, USA. Journal of Coal Geology, 119, 79–87.

    Article  Google Scholar 

  • MacEachern, J. A., Pemberton, S. G., Bann, K. L., & Gingras, M. K. (2007). Departures from the archetypal ichnofacies: effective recognition of physico-chemical stresses in the rock record. In J. A. MacEachern, K. L. Bann, M. K. Gingras, & S. G. Pemberton (Eds.), Applied ichnology SEPM Short Course Notes (Vol. 52, pp. 65–93). Society for Sedimentary Geology.

    Google Scholar 

  • Martin, W. D. (1998). Geology of the Dunkard Group (Upper Pennsylvanian-Lower Permian) in Ohio, West Virginia, and Pennsylvania. Ohio Division of Geological Survey Bulletin, 73, 1–49.

    Google Scholar 

  • Miall, A. D. (2010). Alluvial deposits. In N. P. James & R. W. Dalrymple (Eds.), Facies models 4 (pp. 105–137). Geological Association of Canada.

    Google Scholar 

  • Mikuś, P., & Uchman, A. (2013). Beetle burrows with a terminal chamber: a contribution to the knowledge of the trace fossil Macanopsis in continental sediments. Palaios, 28, 403–413. https://doi.org/10.2110/palo.2012.p12-129r

    Article  Google Scholar 

  • Milici, R. C. (2005). Appalachian coal assessment: defining the coal systems of the Appalachian basin. In P. D. Warwick (Ed.), Coal systems (Vol. 387, pp. 9–30). Geological Society of America Special Paper. Geological Society of America.

    Google Scholar 

  • Miller, M. F. (2003). Styles of behavioral complexity recorded by selected trace fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1–4), 33–43.

    Article  Google Scholar 

  • Miller, M. F., & Collinson, J. W. (1994). Trace fossils from Permian and Triassic sandy braided stream deposits, central Transantarctic Mountains. Palaios, 9(6), 605–610.

    Article  Google Scholar 

  • Minter, N. J., Buatois, L. A., Mángano, M. G., Davies, N. S., Gibling, M. R., & Labandeira, C. (2016). The establishment of continental ecosystems. In M. G. Mángano & L. A. Buatois (Eds.), The trace-fossil record of major evolutionary events: Mesozoic and Cenozoic (Vol. 2, pp. 205–324). Springer.

    Chapter  Google Scholar 

  • Montañez, I. P., & Cecil, C. B. (2013). Paleoenvironmental clues archived in non-marine Pennsylvanian–lower Permian limestones of the Central Appalachian Basin, USA. International Journal of Coal Geology, 119, 41–55.

    Article  Google Scholar 

  • Montañez, I. P., & Poulsen, C. J. (2013). The Late Paleozoic ice age: An evolving paradigm. Annual Review of Earth and Planetary Sciences, 41, 629–656.

    Article  Google Scholar 

  • Moore, J. C., Berlow, E. L., Coleman, D. C., de Ruiter, P. C., Dong, Q., Hastings, A., Collins Johnson, N., McCann, K. S., Melville, K., Morin, P. J., Nadelhoffer, K., Rosemond, A. D., Post, D. M., Sabo, J. L., Scow, K. M., Vanni, M. J., & Wall, D. H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7(7), 584–600.

    Article  Google Scholar 

  • Morrissey, L. B., & Braddy, S. J. (2004). Terrestrial trace fossils from the Lower Old Red sandstone, southwest Wales. Geological Journal, 39(3–4), 315–336.

    Article  Google Scholar 

  • Naiman, R. J., Decamps, H., & Pollock, M. (1993). The Role of riparian corridors in maintaining regional biodiversity. Ecological Applications, 3(2), 209–212. https://doi.org/10.2307/1941822

    Article  Google Scholar 

  • Nakamura, A., Proctor, H., & Catterall, C. P. (2003). Using soil and litter arthropods to assess the state of rainforest restoration. Ecological Management & Restoration, 4, S20–S28.

    Article  Google Scholar 

  • Pianka, E. R. (1970). On r-and K-selection. The American Naturalist, 104(940), 592–597.

    Article  Google Scholar 

  • Powell, M. G., Schöne, B. R., & Jacob, D. E. (2009). Tropical marine climate during the late Paleozoic ice age using trace element analyses of brachiopods. Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1–2), 143–149.

    Article  Google Scholar 

  • Retallack, G. J. (2001). Soils of the past: An introduction to paleopedology. John Wiley and Sons.

    Book  Google Scholar 

  • Rindsberg, A. K., & Kopaska-Merkel, D. C. (2005). Treptichnus and Arenicolites from the Steven C. Minkin Paleozoic footprint site (Langsettian, Alabama, USA). In R. J. Buta (Ed.), Pennsylvanian footprints in the Black Warrior Basin of Alabama (pp. 121–141). University of Alabama.

    Google Scholar 

  • Roy, K., Valentine, J. W., Jablonski, D., & Kidwell, S. M. (1996). Scales of climatic variability and time averaging in Pleistocene biotas: Implications for ecology and evolution. Trends in Ecology & Evolution, 11(11), 458–463.

    Article  Google Scholar 

  • Schneider, R. J., Lucas, S. G., & Barrick, J. E. (2013). The Early Permian age of the Dunkard Group, Appalachian basin, U.S.A., based on spiloblattinid insect biostratigraphy. International Journal of Coal Geology, 119, 88–92.

    Article  Google Scholar 

  • Stow, D. A. V. (2005). Sedimentary rocks in the field: a color guide. Gulf Professional Publishing.

    Book  Google Scholar 

  • Sturgeon, M. T. (1958). The geology and mineral resources of Athens County, Ohio. Ohio Division of Geological Survey Bulletin, 57, 1–600.

    Google Scholar 

  • Sturgeon, M. T., & Merrill, W. M. (1949). An additional fossiliferous member in the Allegheny formation (Pennsylvanian) of Ohio. The Ohio Journal of Science, 49(1), 1–11.

    Google Scholar 

  • Tabor, N. J., & Montañez, I. P. (2004). Morphology and distribution of fossil soils in the Permo-Pennsylvanian Wichita and Bowie Groups, north-central Texas, USA: Implications for western equatorial Pangean palaeoclimate during icehouse–greenhouse transition. Sedimentology, 51(4), 851–884.

    Article  Google Scholar 

  • Tabor, N. J., & Poulsen, C. J. (2008). Palaeoclimate across the Late Pennsylvanian-Early Permian tropical palaeolatitudes: A review of climate indicators, their distribution, and relation to palaeophysiographic climate factors. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 293–310.

    Article  Google Scholar 

  • Tabor, N. J., Montañez, I. P., Scotese, C. R., Poulsen, C. J., & Mack, G. H. (2008). Paleosol archives of environmental and climatic history in paleotropical western Pangea during the latest Pennsylvanian through Early Permian. In C. R. Fielding, T. D. Frank, & J. L. Isbell (Eds.), Resolving the Late Paleozoic Ice Age in time and space (pp. 291–304). Geological Society of America.

    Chapter  Google Scholar 

  • Thacker, H. A., & Hembree, D. I. (2021). Neoichnological study of burrowing darkling beetles (Coleoptera: Tenebrionidae) from larval to adult stages. Ichnos, 28(4), 290–308.

    Article  Google Scholar 

  • Underwood, E. C., Olson, D., Hollander, A. D., & Quinn, J. F. (2014). Ever-wet tropical forests as biodiversity refuges. Nature Climate Change, 4(9), 740–741.

    Article  Google Scholar 

  • Vossler, S. M., & Pemberton, S. G. (1988). Skolithos in the Upper Cretaceous Cardium Formation: An ichnofossil example of opportunistic ecology. Lethaia, 21(4), 351–362.

    Article  Google Scholar 

  • Walsh, R. P., Blake, W. H., Slaymaker, O., & Spencer, T. (2009). Tropical rainforests. In O. Slaymaker, T. Spencer, & C. Embleton-Hamnn (Eds.), Geomorphology and global environmental change (pp. 214–257). Cambridge University Press.

    Chapter  Google Scholar 

  • Walther, G. R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 365, 2019–2024. https://doi.org/10.1098/rstb.2010.0021

    Article  Google Scholar 

  • Whittaker, R. H. (1953). A consideration of climax theory: The climax as a population and pattern. Ecological Monographs, 23(1), 41–78.

    Article  Google Scholar 

  • Williams, E. G. (1960). Marine and fresh water fossiliferous beds in the Pottsville and Allegheny Groups of western Pennsylvania. Journal of Paleontology, 34, 908–922.

    Google Scholar 

  • Zhao, Z., Fan, R. Y., Zhang, L. J., Rodríguez-Tovar, F. J., & Gong, Y. M. (2020). Behavioural responses of Rhizocorallium to storm events: Evidence from the Middle Triassic of SW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 545, 109640.

    Article  Google Scholar 

  • Zonneveld, J. P., Pemberton, S. G., Saunders, T. D., & Pickerill, R. K. (2002). Large, robust Cruziana from the Middle Triassic of northeastern British Columbia: Ethologic, biostratigraphic, and paleobiologic significance. Palaios, 17(5), 435–448.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Joseph Wislocki for help with field work. This project would not have been possible without funding by the Ohio University Geological Sciences Graduate Student Alumni Grant (to JKC), the Geological Society of America Student Research Grant (to JKC), the Society for Sedimentary Geology Student Research Grant (to JKC), and the Paleontological Society Student Research Grant (to JKC).

Funding

Funding for this research was provided by the Ohio University Geological Sciences Graduate Student Alumni Grant (to JKC), the Geological Society of America Student Research Grant (to JKC), the Society for Sedimentary Geology Student Research Grant (to JKC), and the Paleontological Society Student Research Grant (to JKC).

Author information

Authors and Affiliations

Authors

Contributions

J.C. and D.H. wrote the manuscript text and prepared the figures and tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daniel I. Hembree.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crowell, J.K., Hembree, D.I. Climate-induced changes in fluvial ichnofossil assemblages of the Pennsylvanian–Permian Appalachian Basin. J. Sediment. Environ. 8, 261–282 (2023). https://doi.org/10.1007/s43217-023-00132-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00132-y

Keywords

Navigation