Skip to main content
Log in

Mafia deep basin: basin development and petroleum system elements

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

This study aimed to assess basin development and petroleum system elements of the Mafia deep basin based on the interpretation of 2D seismic data. The results have shown that the development of the Mafia deep basin was influenced by several tectonic episodes, including the Permo-Triassic Karoo rifting, the Mid-Jurassic–Cretaceous tectonic event, and the Cenozoic extensional and strike-slip faulting tectonics. The tectonic events created different structures that allowed the migration and trapping of hydrocarbons in the study area. These structures include deep-rooted faults and both negative and positive flowering fault structures. The positive flower structures along the Seagap Fault form potential petroleum prospects in the Mafia deep basin. Petroleum migration took advantage of weak zones below sand-filled channels and open fault systems linked to episodic tectonic reactivations. Potential petroleum reservoirs include the Middle Jurassic shallow water deposits, the Cretaceous hybrid turbidite-contourite deposits, Paleocene–Miocene southward migrating channelized sands, and the Pliocene–Holocene channel deposits and their respective channel-levee successions. These reservoirs are interpreted to have been charged by the deep-water Middle Jurassic source rocks. The possible presence of gas generation, migration, and accumulation in the Mafia deep basin is interpreted based on the presence of direct hydrocarbon indicators. These indicators include gas chimneys and wipe-outs, and flat spots that are mostly available in the Paleocene–Holocene stratigraphy of the study area. Potential seal rocks include extensive drift deposits and deep-water shales deposited during marine transgressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All used datasets are confidential but may be accessed upon formal approval by the Tanzania Petroleum Upstream Regulatory Authority (PURA).

References

  • Alzaki, T. T. (2016). 2D seismic data and gas chimney interpretation in the South Taranaki Graben, New Zealand. Master's thesis, Missouri University of Science and Technology.

  • Aminzadeh, F., Connolly, D., & De Groot, P. (2002). Interpretation of gas chimney volumes. In SEG Technical Program Expanded Abstracts 2002 (pp. 440–443). Society of Exploration Geophysicists

  • Biddle, K. T., & Wielchowsky, C. C. (1994). Hydrocarbon Traps: Chapter 13: Part III. Processes.

  • Bischoff, A., Nicol, A., Cole, J., & Gravley, D. (2019). Stratigraphy of architectural elements of a buried monogenetic volcanic system. Open Geosciences, 11, 581–616. https://doi.org/10.1515/geo-2019-0048

    Article  Google Scholar 

  • Bjorlykke, K. (2010). Petroleum geoscience: From sedimentary environments to rock physics. Textbook, Springer Science & Business Media.

  • Brouwer, F. G. C., Welsh, A., Connolly, D. L., Selva, C., Curia, D. & Huck, A. (2008). High frequencies attenuation and low frequency shadows in seismic data caused by gas chimneys, onshore Ecuador. In 70th EAGE Conference and Exhibition incorporating SPE EUROPEC 2008 (pp. cp-40). European Association of Geoscientists & Engineers

  • Brown, A. R. (2011). Horizon and formation attributes, interpretation of three-dimensional seismic data. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560802884.ch8a

    Article  Google Scholar 

  • Brownfield, M. E. (2016). Assessment of Undiscovered Oil and Gas Resources of the Tanzania Coastal Province, East Africa. In: M. E. Brownfiel (compiler), Geologic Assessment of Undiscovered Hydrocarbon Resources of Sub-Saharan Africa. U.S. Geological Survey Digital Data Series 69-GG, chap. 12, 12p. https://doi.org/10.3133/ds69GG

  • Chopra, S., & Marfurt, K. J. (2007). Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series. https://doi.org/10.1190/1.9781560801900

    Article  Google Scholar 

  • Coffin, M. F., & Rabinowitz, P. D. (1988). Evolution of the Conjugate East African -Madagascar margins and Western Somalia Basin, Geological Society of America, Special Paper, 226, p 78

  • Cope, M. J. (2000). Tanzania mafia deepwater: basin indicates potential on new seismic data. Oil and Gas Journey, 98, 40–49.

    Google Scholar 

  • Danforth, A., Granath, J., Horn, B., & Komba, K. (2012). Hydrocarbon Potential of the Deep Offshore Tanzania Basin in Context of East Africa's Transform Margin. East Africa: Petroleum Province of the 21st Century, London, 24–26 October 2012, 32–33

  • Deptuck, M. E., Sylvester, Z., Pirmez, C., & O’Byrne, C. (2007). Migration–aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope. Marine and Petroleum Geology, 24, 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005

    Article  Google Scholar 

  • England, WA. Secondary Migration and Accumulation of Hydrocarbons: Chapter 12: Part III at Magoon, L. B., & Dow, W. G. (1994). The Petroleum System from Source to Trap. American Association of Petroleum Geologists Memoir, 60, 211–217

  • Eubank, R. T., & Makki, A. (1981). Structural geology of the Central Sumatra back-arc basin: Jakarta, Indonesian Petroleum Association, 10th Annual Convention, pp 153–196

  • Fawad, M., Mondol, N. H., Baig, I., & Jahren, J. (2020). Diagenetic related flat spots within the Paleogene Sotbakken Group in the vicinity of the Senja Ridge, Barents Sea. Petroleum Geoscience, 26, 373–385. https://doi.org/10.1144/petgeo2018-122

    Article  Google Scholar 

  • Fonnesu, M., Palermo, D., Galbiati, M., Marchesinia, M., Bonamini, E., & Bendias, D. (2020). A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents: The giant Eocene Coral Field in northern Mozambique. Marine and Petroleum Geology, 111, 179–201. https://doi.org/10.1016/j.marpetgeo.2019.07.047

    Article  Google Scholar 

  • Fossum, K. (2020). Jurassic – Cretaceous stratigraphic development of the Mandawa Basin, Tanzania: An integrated sedimentological and heavy mineral study of the early post-rift succession. Ph.D. thesis, Department of Geosciences, University of Oslo, Norway

  • Franke, D., Jokat, W., Ladage, S., Stollhofen, H., Klimke, J., Lutz, R., Mahanjane, E. S., Ehrhardt, A., & Schreckenberger, B. (2015). The offshore East African Rift System: Structural framework at the toe of a juvenile rift. Tectonics, 34, 2086–2104. https://doi.org/10.1002/2015TC003922

    Article  Google Scholar 

  • Fuhrmann, A., Kane, I. A., Clare, M. A., Ferguson, R. A., Schomacker, E., Bonamini, E., & Contreras, F. A. (2020). Hybrid turbidite-drift channel complexes: an integrated multiscale model. Geology, 48, 562–568. https://doi.org/10.1130/G47179.1

    Article  Google Scholar 

  • Hanafy, S., Farhood, K., Mahmoud, S. E., Nimmagadda, S., & Mabrouk, W. M. (2018). Geological and geophysical analyses of the different reasons for DHI failure case in the Nile Delta Pliocene section. Journal of Petroleum Exploration and Production Technology, 8, 969–981. https://doi.org/10.1007/s13202-018-0445-4

    Article  Google Scholar 

  • Hansen, D. M., Redfern, J., Federici, F., Di-Biase, D., & Bertozzi, G. (2007). Miocene igneous activity in the Northern Subbasin, offshore Senegal, NW Africa. Marine and Petroleum Geology, 25, 1–15. https://doi.org/10.1016/j.marpetgeo.2007.04.007

    Article  Google Scholar 

  • Harding, T. P. (1985). Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion. American Association of Petroleum Geologists Bulletin, 69, 582–600. https://doi.org/10.1306/AD462538-16F7-11D7-8645000102C1865D

    Article  Google Scholar 

  • He, Y., Zhu, J., Zhang, Y., Liu, A., & Pan, G. (2017). The research and application of bright spot quantitative interpretation in deepwater exploration. Open Journal of Geology, 7, 588–601. https://doi.org/10.4236/ojg.2017.74040

    Article  Google Scholar 

  • Hindle, A. D. (1997). Petroleum migration pathways and charge concentration: a three-dimensional model. American Association of Petroleum Geologists Bulletin, 81, 1451–1481. https://doi.org/10.1306/3B05BB1E-172A-11D7-8645000102C1865D

    Article  Google Scholar 

  • Houseknecht, D. W., & Bird, K. J. (2006). Oil and gas resources of the Arctic Alaska petroleum province. U.S. Geological Survey Professional Paper 1732-A, 11 p., available online at: http://pubs.usgs.gov/pp/pp1732a/

  • Huang, L., & Liu, C. Y. (2017). Three types of flower structures in a divergent-wrench fault zone. Journal of Geophysical Research: Solid Earth, 122, 10–478. https://doi.org/10.1002/2017JB014675

    Article  Google Scholar 

  • Hunt, J. M. (1995). Petroleum Geochemistry and Geology (Textbook). Petroleum Geochemistry and Geology (Textbook). (2nd ed.), WH Freeman Company

  • Jackson, C. A. L. (2012). Seismic reflection imaging and controls on the preservation of ancient sill-fed magmatic vents. Journal of the Geological Society, 169, 503–506. https://doi.org/10.1144/0016-76492011-147

    Article  Google Scholar 

  • Jamaludin, S. F., Latiff, A. H. A., & Kadir, A. A. (2016). Interpretation of gas seepage on seismic data: Example from Malaysian offshore. Journal of Physics: Conference Series 660(2015), 012002. https://doi.org/10.1088/1742-6596/660/1/012002

  • Jobe, Z. R., Lowe, D. R., & Uchytil, S. J. (2011). Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Marine and Petroleum Geology, 28, 843–860. https://doi.org/10.1016/j.marpetgeo.2010.07.012

    Article  Google Scholar 

  • Kapilima, S. (2003). Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times. Tanzania Journal of Science, 29, 1–16. https://doi.org/10.4314/tjs.v29i1.18362

    Article  Google Scholar 

  • Katumwehe, A. B., Abdelsalam, M. G., Atekwana, E. A., & Laó-Dávila, D. A. (2016). Extent, kinematics and tectonic origin of the Precambrian Aswa Shear Zone in eastern Africa. Gondwana Research, 34, 241–253. https://doi.org/10.1016/j.gr.2015.03.007

    Article  Google Scholar 

  • Kent, P. E., Hunt, J. A., & Johnstone, D. W. (1971). The Geology and Geophysics of Coastal Tanzania. Institute of Geological Sciences, Geophysical Papers, 6, 1–101.

    Google Scholar 

  • Key, R. M., Smith, R. A., Smelror, M., Sæther, O. M., Thorsnes, T., Powell, J. H., Njange, F., & Zandamela, E. B. (2008). Revised lithostratigraphy of the Mesozoic-Cenozoic succession of the onshore Rovuma Basin, northern coastal Mozambique. South African Journal of Geology, 111, 89–108. https://doi.org/10.2113/gssajg.111.1.89

    Article  Google Scholar 

  • Kiswaka, E. B. (2015). 2D Seismic Interpretation, Basin and Petroleum System Modelling of the Block 5 Offshore Southern Tanzania (Master's thesis). Norwegian University of Science and Technology, p 63

  • Kiswaka, E. B., & Felix, M. (2020a). Norwegian Sea area Permo-Triassic organic-carbon-rich deposits from seismic. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2020.104463

    Article  Google Scholar 

  • Kiswaka, E. B., & Felix, M. (2020b). Permo-Triassic sedimentary fills and tectonic phases off Mid Norway: seismic investigation of the Trøndelag Platform. Norwegian Journal of Geology/norsk Geologisk Forening. https://doi.org/10.1785/njg100-2-3

    Article  Google Scholar 

  • Krishna, K. S. (2007). Seismic stratigraphy, some examples from Indian Ocean, interpretation of reflection data in interactive mode. Available online through https://drs.nio.org/drs/bitstream/handle/2264/715/Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_223.pdf?sequence=2. Accessed 22 Jan 2023 at 2245 Hrs [EAT}

  • Kyrkjebø, R., Gabrielsen, R. H., & Faleide, J. I. (2004). Unconformities related to the Jurassic-Cretaceous synrift–post-rift transition of the northern North Sea. Journal of the Geological Society, 161, 1–17. https://doi.org/10.1144/0016-764903-051

    Article  Google Scholar 

  • Løseth, H., Wensaas, L., Gading, M., Duffaut, K., & Springer, M. (2011). Can hydrocarbon source rocks be identified on seismic data? Geology, 39, 1167–1170. https://doi.org/10.1130/G32328.1

    Article  Google Scholar 

  • Magee, C., Hunt-Stewart, E., & Jackson, C. A. L. (2013). Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth and Planetary Science Letters, 373, 41–53. https://doi.org/10.1016/j.epsl.2013.04.041

    Article  Google Scholar 

  • Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001

    Article  Google Scholar 

  • McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., Covault, J. A., Levy, M., Posamentier, H. W., & Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: patterns and predictions. Marine and Petroleum Geology, 2011(28), 728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008

    Article  Google Scholar 

  • Mitchum Jr, R. M., Vail, P. R., & Thompson III, S. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.

  • Mohamed, B., Mshiu, E., & Mulaya, E. (2019). Geological modeling of hydrocarbon reservoir rocks in the Mafia Basin, offshore Tanzania. Tanzania Journal of Science, 45, 238–252.

    Google Scholar 

  • Mvile, B. N., Kiswaka, E. B., Osinowo, O. O., Marobhe, I. M., Olayinka, A. I., & Mshiu, E. E. (2021). Cretaceous-quaternary seismic stratigraphy of the Tanga offshore Basin in Tanzania and its petroleum potential. Journal of Petroleum Exploration and Production Technology. https://doi.org/10.1007/s13202-021-01351-7

    Article  Google Scholar 

  • Mvile, B. N., Kiswaka, E. B., Osinowo, O. O., Marobhe, I. M., Olayinka, A. I., & Mshiu, E. E. (2022). Timing of the Miocene-Quaternary magmatic intrusions in the Tanga offshore basin: correlation to age equivalent deposits in the Eyasi-Wembere basin and their implications for petroleum potential. Preprint version, accessed through researchssquare.com.

  • Nanda, N. C. (2017). Qualitative analysis of seismic amplitudes for characterization of Pliocene hydrocarbon sands, eastern offshore India. First Break. https://doi.org/10.3997/1365-2397.2017017

    Article  Google Scholar 

  • Nelson, J. O., & Krausse, H. F. (1981). The Cottage Grove fault system in southern Illinois. Illinois Geological Survey Circular, 522, 65.

    Google Scholar 

  • Nicholas, C. J., Pearson, P. N., McMillan, I. K., Ditchfield, P. W., & Singano, J. M. (2007). Structural evolution of southern coastal Tanzania since the Jurassic. Journal of African Earth Sciences, 48, 273–297. https://doi.org/10.1016/j.jafrearsci.2007.04.003

    Article  Google Scholar 

  • Nottvedt, A., Gabrielsen, R. H., & Steel, R. J. (1995). Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea. Marine and Petroleum Geology, 12, 881–901. https://doi.org/10.1016/0264-8172(95)98853-W

    Article  Google Scholar 

  • Pettingill, H. S., Holeywellv, R., Forrest, M., Roden, R., Weimer, P., & Faroppa, J. (2019). DHIs and Flat Spots: The Miocene Levant Basin Within a Global Perspective. In: American Association of Petroleum Geologists, Geoscience Technology Workshop. Tel Aviv, Israel.

  • Planke, S., Rabbel, O., Galland, O., Millett, J.M., Manton, B., Jerram, D.A., Palma, O., & Spacapan, J. B. (2018). Seismic imaging and petroleum implications of igneous intrusions in sedimentary basins constrained by outcrop analogues and seismic data from the Neuquén Basin and the NE Atlantic. In 10th Hydrocarbon Exploration and Development Congress Geophysics Symposium: Geophysics as a Link Between Knowledge of the Earth and Society, Mendoza, Argentina. Available at SEISMIC-IMAGING-AND-PETROLEUM-IMPLICATIONS-OF-IGNEOUS-INTRUSIONS-IN-SEDIMENTARY-BASINS-CONSTRAINED-BY-OUTCROP-ANALOGUES-AND-SEISMIC-DATA-FROM-THE-NEUQUEN-BASIN-AND-THE-NE-ATLANTIC.pdf (researchgate.net). Accessed 22 Jan 2023 at 2314 HRS [EAT]

  • Posamentier, H. W., Erskine, R. D., & Mitchum, R. M. (1991). Models for submarine-fan deposition within a sequence-stratigraphic framework. In P. Weimer & M. H. Link (Eds.), Seismic facies and sedimentary processes of submarine fans and turbidite systems. Frontiers in sedimentary geology. New York NY: Springer. https://doi.org/10.1007/978-1-4684-8276-8_6

    Chapter  Google Scholar 

  • Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73, 367–388. https://doi.org/10.1306/111302730367

    Article  Google Scholar 

  • Posamentier, H. W., & Vail, R. R. (1988). Eustatic controls on clastic deposition II – sequence and systems tracts models. Sea level changes – an integral approach. Society of Economic Paleontologists and Mineralogists Special Publication, 42, 125–154.

    Google Scholar 

  • Posamentier, H. W., Wisman, P. S., & Plawman, T. (2000). Deep Water Depositional Systems-Ultra Deep Makassar Strait, Indonesia. GCSSEPM Foundation 20th Annual Research Conference, Deep-Water Reservoirs of the World, December 3–6, 2000. https://doi.org/10.5724/gcs.00.15.0806

  • Prosser, S. (1993). Rift-related linked depositional systems and their seismic expression. In G. D. Williams & A. Dobb (eds.), Tectonics and Seismic Sequence Stratigraphy, Geological Society, London, Special Publication 71, pp. 35–66. https://doi.org/10.1144/GSL.SP.1993.071.01.03.

  • Ravnås, R., & Bondevik, K. (1997). Architecture and controls on Bathonian-Kimmeridgian shallow-marine synrift wedges of the Oseberg-Brage area, northern North Sea. Basin Research, 9, 197–226. https://doi.org/10.1046/j.1365-2117.1997.00041.x

    Article  Google Scholar 

  • Ravnås, R., & Steel, R. J. (1998). Architecture of marine rift-basin successions. American Association of Petroleum Geologists Bulletin, 82, 110–146. https://doi.org/10.1306/1D9BC3A9-172D-11D7-8645000102C1865D

    Article  Google Scholar 

  • Rego, M., Carr, A., Cameron, N., & Boote, D. (2019). Using basin modelling to examine the origin of the hydrocarbons within the deepwater Rovuma Basin of Tanzania, Mozambique and the Comoros. In PESGB-HGS 2019 Africa E&P Conference, pp. 1–16

  • Reynolds, P., Schofield, N., Brown, R. J., & Holford, S. P. (2018). The architecture of submarine monogenetic volcanoes–insights from 3D seismic data. Basin Research, 30, 437–451. https://doi.org/10.1111/bre.12230

    Article  Google Scholar 

  • Sangree, J. B., & Widmier, J. M. (1977). Seismic stratigraphy and global changes of sea level: Part 9. Seismic interpretation of clastic depositional facies: Section 2. Application of seismic reflection configuration to stratigraphic interpretation. American Association of Petroleum Geologists Memoir., 26, 165–184.

    Google Scholar 

  • Sansom, P. (2018). Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24, 258–276. https://doi.org/10.1144/petgeo2018-044

    Article  Google Scholar 

  • Schroot, B. M., & Schüttenhelm, R. T. E. (2003). Expressions of shallow gas in the Netherlands North Sea. Netherlands Journal of Geosciences, 82, 91–105. https://doi.org/10.1017/S0016774600022812

    Article  Google Scholar 

  • Semb, P. H. (2009). Possible seismic hydrocarbon indicators in offshore Cyprus and Lebanon. GeoArabia, 14, 49–66. https://doi.org/10.2113/geoarabia140249

    Article  Google Scholar 

  • Senger, K., Millett, J., Planke, S., Ogata, K., Eide, C. H., Festøy, M., Galland, O., & Jerram, D. A. (2017). Effects of igneous intrusions on the petroleum system: a review. First Break. https://doi.org/10.3997/1365-2397.2017011

    Article  Google Scholar 

  • Seni, E. J., Mulibo, G. D., & Bertotti, G. (2018). Tectono-sedimentary evolution of the offshore hydrocarbon exploration Block 5, East Africa: Implication for hydrocarbon generation and migration. Open Journal of Geology, 8, 819–840.

    Article  Google Scholar 

  • Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., & Chandler, M. (2012). Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.

    Article  Google Scholar 

  • Seward, A. C. (1922). On a small collection of fossil plants from Tanganyika Territory. Geological Magazine, 59, 385–392. https://doi.org/10.1017/S0016756800109410

    Article  Google Scholar 

  • Sorkhabi, R., & Tsuji, Y. (2005). The place of faults in petroleum traps. In R. Sorkhabi & Y. Tsuji, (Eds.), Faults, fluid flow, and petroleum traps: American Association of Petroleum Geologists Memoir, 85, 1–31

  • Spacapan, J. B., Palma, J. O., Galland, O., Manceda, R., Rocha, E., D’odorico, A., & Leanza, H. A. (2018). Thermal impact of igneous sill-complexes on organic-rich formations and implications for petroleum systems: a case study in the northern Neuquén Basin, Argentina. Marine and Petroleum Geology, 91, 519–531. https://doi.org/10.1016/j.marpetgeo.2018.01.018

    Article  Google Scholar 

  • Taner, M. T. (2001). Seismic attributes. CSEG Recorder, 26, 48–56.

    Google Scholar 

  • Taqi, T. A. (2016). 2D seismic data and gas chimney interpretation in the South 2D seismic data and gas chimney interpretation in the South Taranaki Graben, New Zealand Taranaki Graben, New Zealand [Thesis-Open Access]. Scholars' Mine: Missouri University of Science and Technology

  • Teixeira, L., Martinez, V., & Chrispin, S. (2009). Tanzania ultra-deepwater exploration. Search and Discovery, 10189, 1–9.

    Google Scholar 

  • Thompson, J. O., Moulin, M., Aslanian, D., De Clarens, P., & Guillocheau, F. (2019). New starting point for the Indian Ocean: second phase of breakup for Gondwana. Earth-Science Reviews, 191, 26–56. https://doi.org/10.1016/j.earscirev.2019.01.018

    Article  Google Scholar 

  • Vail, P. R. (1987). Seismic stratigraphy interpretation procedure. In: Bally AW (ed.) Atlas of seismic stratigraphy. American Association of Petroleum Geologists studies in Geology, pp. 1–10

  • Zeng, L., Wang, H., Gong, L., & Liu, B. (2010). Impacts of the tectonic stress field on natural gas migration and accumulation: a case study of the Kuqa Depression in the Tarim Basin, China. Marine and Petroleum Geology, 27, 1616–1627. https://doi.org/10.1016/j.marpetgeo.2010.04.010

    Article  Google Scholar 

  • Zhao, F., Wu, S., Sun, Q., Huuse, M., Li, W., & Wang, Z. (2014). Submarine volcanic mounds in the Pearl River Mouth Basin, northern South China Sea. Marine Geology, 355, 162–172. https://doi.org/10.1016/j.margeo.2014.05.018

    Article  Google Scholar 

  • Zhao, Y., Tong, D., Song, Y., Yang, L., & Huang, C. (2016). Seismic reflection characteristics and evolution of intrusions in the Qiongdongnan Basin: implications for the rifting of the South China Sea. Journal of Earth Science, 27, 642–653. https://doi.org/10.1007/s12583-016-0708-2

    Article  Google Scholar 

  • Zhixin, W., Zhaoming, W., Chengpeng, S., Zhengjun, H., & Xiaobing, L. (2015). Structural architecture differences and petroleum exploration of passive continental margin basins in east Africa. Petrol. Explor. Develop, 42, 733–744. https://doi.org/10.1016/S1876-3804(15)30070-7

    Article  Google Scholar 

  • Zongying, Z., Ye, T., Shujun, L., & Wenlong, D. (2013). Hydrocarbon potential in the key basins in the east coast of Africa. Petroleum Exploration and Development, 40, 582–591. https://doi.org/10.1016/S1876-3804(13)60076-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Tanzania Petroleum Development Corporation (TPDC) for allowing access to the current seismic data for the MSc study in 2015. The Petroleum Upstream Regulatory authority (PURA) is appreciated for the publication permit of this manuscript. The MSc work that resulted in the interpretation of different seismic lines presented in this work was funded by the ANTHE scholarship scheme. Discussions and inputs from Bahati Mohamed improved this manuscript. We also thank anonymous reviewers for their invaluable contribution to this work.

Author information

Authors and Affiliations

Authors

Contributions

EBK: Conceptualization, 2D seismic interpretation, annotation of figures, writing original draft and text editing, visualization, discussion, manuscript review EEM: Writing original draft, text editing, discussion, supervision, manuscript review

Corresponding author

Correspondence to Emily Barnabas Kiswaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by M. V. Alves Martins.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiswaka, E.B., Mshiu, E.E. Mafia deep basin: basin development and petroleum system elements. J. Sediment. Environ. 8, 153–173 (2023). https://doi.org/10.1007/s43217-023-00128-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00128-8

Keywords

Navigation