Skip to main content

Dynamics and storm records on sheltered beaches: Paraty, southeast coast of Brazil

Abstract

This study aimed to characterize the dynamics of sheltered beaches in the Paraty area and their susceptibility to storm events. The adopted methodology consisted of 40 beach topographic profiles, collection of 38 samples for granulometric and morphoscopy analysis, and calculation of the emerged volume of sediments. The sheltered beaches in Paraty have low-energy waves, which reach about 0.5 m under stormy conditions. These beaches have different levels of exposure to storm events, which is directly associated with the direction of wave incidence, bay entrance orientation, and the presence of islands. There are records of wave transposition, damage to urban structures, and erosion, which point to the susceptibility of this coast to storm events. Washover deposits were observed at São Gonçalo, Taquari, and Prainha. On Jabaquara, there is erosion, with a reduction in the sediment volume at the southern end of the beach, with concomitant destruction of buildings and fallen trees. The erosion process in Jabaquara is associated with the low sediment exchange; storm waves, responsible for removing sediment from the beaches, without subsequent replacement (post-storm); and the interventions carried out in the area, which may have altered the local hydrodynamics. The sediments of these beaches vary widely in size, from gravel and sands to mud in areas near mangroves, increasing from the backshore to the nearshore zone. The quartz grains of the sands are in general sub-angular, showing the low maturity of these materials, which is common on coasts subject to the offer of sediments from local fluvial influence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albuquerque, M. G., Alves, D. C. L., Espinoza, J. M. A., Oliveira, U. R., & Simões, R. S. (2018). Determining shoreline response to meteo-oceanographic events using remote sensing and Unmanned Aerial Vehicle (UAV): Case study in Southern Brazil. Journal of Coastal Research, 85, 766–770. https://doi.org/10.2112/SI85-154.1

    Article  Google Scholar 

  2. Amador, E. S. (1997). Baía de Guanabara e ecossistemas periféricos: Homem e Natureza.

  3. Baptista Neto, J. A., & Silva, M. A. M. (2001). Ocorrência e origem de bolas de lama nas praias da Enseada de Jurujuba (Baía de Guanabara) Niterói-RJ. Boletim Paranaense De Geociências, 49, 53–61.

    Article  Google Scholar 

  4. Bell, H. S. (1940). Armored mud balls: Their origin, properties, and role in sedimentation. Journal of Geology, 48, 1–31.

    Article  Google Scholar 

  5. Benchimol, M. F., (2007). Gestão de unidades de conservação marinhas: um estudo de caso da área de proteção ambiental da Baía de Paraty – RJ. 2007. MSc Dissertation. Universidade Federal do Rio de Janeiro, Brasil.

  6. Bird, E. C. F. (2008). Coastal geomorphology: an introduction (2nd ed.). Other Wiley Editorial Offices.

    Google Scholar 

  7. Birkemeier, W. A. (1984). A user’s guide to ISRP: The interactive survey reduction program. Coastal Engineering Research Center, 1, 1–118.

    Google Scholar 

  8. Boer, W., Mao, Y., Hagenaars, G., Vries, S., Slinger, J., & Vellinga, T. (2019). Mapping the Sandy Beach evolution around seaports at the scale of the African Continent. Journal of Marine Science and Engineering, 26, 9960–9976. https://doi.org/10.3390/jmse7050151

    Article  Google Scholar 

  9. Bowman, D., Rosas, V., & Pranzini, E. (2014). Pocket beaches of Elba Island (Italy) e Planview geometry, depth of closure and sediment dispersal. Journal Estuarine, Coastal and Shelf Science. https://doi.org/10.1016/j.ecss.2013.12.005

    Article  Google Scholar 

  10. Bulhões, E. M. R., Fernandez, G. B., & Rocha, T. B. (2010). Efeitos morfológicos nas barreiras costeiras do litoral centro-norte do Estado do Rio de Janeiro: Resultados do evento de tempestade de abril de 2010. Revista De Geografia, 2, 15–30.

    Google Scholar 

  11. Carter, R. W. G. (1988). Coastal environments: An introduction to the physical, ecological and cultural systems of coastlines (1st ed.). Academic Press.

    Google Scholar 

  12. Carvalho, C., Anjos, R. M., Veiga, R., & Macario, K. (2011). Application of radiometric analysis in the study of provenance and transport processes of Brazilian coastal sediments. Journal of Environmental Radioactivity, 1, 1–13. https://doi.org/10.1016/j.jenvrad.2010.11.011

    Article  Google Scholar 

  13. CPTEC/INPE (2016). Centro de Previsão de Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais. Retrieved October 10, 2016, from https://www.cptec.inpe.br

  14. Davis, R. A., Jr., & Fitzgerald, D. M. (2004). Beaches and Coasts (1st ed.). Blackwell Publishing.

    Google Scholar 

  15. DHN (1980). Diretoria de Hidrografia e Navegação da Marinha do Brasil. Folha de bordo, FB-1500–001/79.

  16. Dias, G. T. M., & Kjerfve, B. (2009). Barrier and Beach Ridge Systems of the Rio de Janeiro Coast. In S. R. Dillenburg & P. A. Hesp (Eds.), Geology and Geomorphology of Holocene Coastal Barriers of Brazil (pp. 225–252). Springer-Verlag.

    Chapter  Google Scholar 

  17. Donnelly, J. P., Butler, J., Roll, S., Wengren, M., & Webb, I. T. (2004). A backbarrier overwash record of intense storms from Brigantine, New Jersey. Marine Geology, 210, 107–121. https://doi.org/10.1016/j.margeo.2004.05.005

    Article  Google Scholar 

  18. Fernandez, G. B., Bulhões, E. M. R., & Rocha, T. B. (2011). Impacts of severe storm occurred in April 2010 along Rio de Janeiro Coast, Brazil. Journal of Coastal Research, 64, 1850–1854.

    Google Scholar 

  19. Ferreira, O. (2005). Storm groups versus extreme single storms: Predicted erosion and management consequences. Journal of Coastal Research, 42, 221–227.

    Google Scholar 

  20. Folk, R. L., & Ward, W. C. (1957). Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3–26.

    Article  Google Scholar 

  21. Friedman, G. M., Sanders, J. E., & Kopaska-Merkel, D. C. (1992). Principles of sedimentary deposits: Stratigraphy and sedimentology (1st ed.). Maxwell Macmillan International.

    Google Scholar 

  22. Godoi, V. A., Calado, L., Watanabe, B. W., Yaginuma, L., & Pereira, M. B. (2011). Evento extremo de ondas na baía da Ilha Grande: Um estudo de caso. Boletim Do Observatório Ambiental Alberto Ribeiro Lamego, 5, 28–44.

    Article  Google Scholar 

  23. Green, A. N., Pillay, T., Cooper, A. G., & Guisado-Pintado, E. (2019). Overwash-dominated stratigraphy of barriers with intermittent inlets. Earth Surface Processes and Landforms, 44, 2097–2111. https://doi.org/10.1002/esp.4631

    Article  Google Scholar 

  24. Hegge, B. J., Eliot, I., & Hsu, J. (1996). Sheltered sandy beaches of Southwestern Australia. Journal of Coastal Research, 12, 748–760.

    Google Scholar 

  25. Holland, G., & Bruyère, C. L. (2014). Recent intense hurricane response to global climate change. Climate Dynamics, 42, 617–627. https://doi.org/10.1007/s00382-013-1713-0

    Article  Google Scholar 

  26. Hudock, J. W., Flaig, P. P., & Woodw, A. J. A. (2014). Washover fans: A modern geomorphologic analysis and proposed classification scheme to improve reservoir models. Journal of Sedimentary Reseach, 84, 854–865. https://doi.org/10.2110/jsr.2014.64

    Article  Google Scholar 

  27. Jackson, N. L., Nordstrom, K. F., Eliot, I., & Masselink, G. (2002). “Low energy” sandy beaches in marine and estuarine environments: A review. Geomorphology, 48, 147–162. https://doi.org/10.1016/S0169-555X(02)00179-4

    Article  Google Scholar 

  28. Kim, I. H., Lee, H. S., Kim, J. H., Yoon, J. S., & Hur, D. S. (2014). Shoreline change due to construction of the artificial headland with submerged breakwaters. Journal of Coastal Research, 72, 145–150. https://doi.org/10.2112/SI72-027.1

    Article  Google Scholar 

  29. Komar, P. D. (1976). Beach processes and sedimentation (1st ed.). Prentice-Hall.

    Google Scholar 

  30. Kossin, J. P., Timothy, L. O., & Kenneth, R. K. (2013). Trend analysis with a new global record of tropical cyclone intensity. Journal of Climate, 26, 9960–9976. https://doi.org/10.1175/JCLI-D-13-00262.1

    Article  Google Scholar 

  31. Kudale, M. D. (2010). Impact of port development on the coastline and the need for protection. Indian Journal of Geo-Marine Sciences, 39(4), 597–604.

    Google Scholar 

  32. Kupfer, S., Ferreira, O., & Costas, S. (2020). Assessment of Overwash-induced Flooding at Two Beaches along the Southwest Algarve, Portugal. Journal of Coastal Research, 95, 484–489. https://doi.org/10.2112/SI95-094.1

    Article  Google Scholar 

  33. Laing, A. K. (1998). An introduction to ocean waves. World Meteorological Organization. Guide to wave analysis and forecasting (2nd ed.). WMO.

    Google Scholar 

  34. Lazarus, E. D., Davenport, K. L., & Matias, A. (2020). Dynamic allometry in coastal overwash morphology. Earth Surface Dynamics, 8, 37–50. https://doi.org/10.5194/esurf-8-37-2020

    Article  Google Scholar 

  35. Loureiro, C., Ferreira, O., & Cooper, J. A. G. (2009). Contrasting morphologic behaviour at embayed beaches in Southern Portugal. Journal of Coastal Research, 56, 83–87.

    Google Scholar 

  36. Mahiques, M. M., Tessler, M. G., & Furtado, V. V. (1998). Characterization of energy gradient in Enclosed Bays of Ubatuba Region, South-Eastern Brazil. Estuarine, Coastal and Shelf Science, 47, 431–446. https://doi.org/10.1006/ecss.1998.0368

    Article  Google Scholar 

  37. Martins, C. A., Figueiredo, M. S., Maluf, V. B., Rocha, T. B., & Fernandez, G. B. (2016). Processos de transposição de ondas sobre dunas frontais observados no leste da barreira costeira holocênica da Massambaba, RJ. XI SINAGEO - Simpósio Nacional de Geomorfologia, 1–10.

  38. Martins, L. R., Martins, I. R., & Tabajara, L. L. (2003). Ocorrências de fragmentos de lama na praia do Cassino, RS, Brasil. Revista Gravel, 1, 47–53.

    Google Scholar 

  39. Masselink, G., Castelle, B., Scott, T., Dodet, G., Suanez, S., Jackson, D., & Floc’h, F. (2016). Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophysical Research Letter, 43, 2135–2143. https://doi.org/10.1002/2015GL067492

    Article  Google Scholar 

  40. Matias, A., Ferreira, O., Vila-Concejo, A., Garcia, T., & Dias, J. A. (2008). Classification of washover dynamics in barrier islands. Geomorphology, 97, 655–674. https://doi.org/10.1016/j.geomorph.2007.09.010

    Article  Google Scholar 

  41. Matias, A., Carrasco, A. R., Loureiro, C., Masselink, D., Andriolo, U., Mccall, R., Ferreira, O., Plomaritis, T. A., Pacheco, A., & Guerreiro, M. (2019). Field measurements and hydrodynamic modelling to evaluate the importance of factors controlling overwash. Coastal Engineering. https://doi.org/10.1016/j.coastaleng.2019.103523

    Article  Google Scholar 

  42. McCubbin, D. G. (1982). Barrier-Island and Strand Plain Facies. In P. A. Scholle & D. Spearing (Eds.), Sandstone depositional environments (pp. 247–279). The American Association of Petroleum Geologists.

    Google Scholar 

  43. McLane, M. (1995). Textures of sedimentary rocks. Sedimentology. Oxford University Press.

    Google Scholar 

  44. Medeiros, M. F. (2006). Estudos da sequência sedimentar holocênica das baías da ribeira e parati (Baía Ilha Grande – RJ) através de métodos sísmicos e análise de testemunhos. MSc Dissertation. Universidade Federal Fluminense, Niterói, Brasil.

  45. Morton, R. A., Paine, J. G., & Gibeaut, J. C. (1994). Stages and durations of post-storm beach recovery, Southeastern Texas Coast, USA. Journal of Coastal Research, 10, 884–908.

    Google Scholar 

  46. Morton, R. A., & Sallenger, A. H., Jr. (2003). Morphological impacts of extreme storms on Sandy Beaches and barriers. Journal of Coastal Research, 19, 560–573.

    Google Scholar 

  47. Muehe, D. (2001). O litoral brasileiro e sua compartimentação. In S. B. Cunha & A. J. T. Guerra (Eds.), Geomorfologia do Brasil (2nd ed., pp. 273–337). Bertrand Brasil.

    Google Scholar 

  48. Muehe, D., & Lima, C. F. (2006). Erosão e progradação do litoral brasileiro (1st ed.). Ministério do Meio Ambiente.

    Google Scholar 

  49. Nordstrom, K. F. (1977). Bayside beach dynamics: Implications for simulation modeling on eroding sheltered tidal beaches. Marine Geology, 25, 333–342.

    Article  Google Scholar 

  50. Nordstrom, K. F. (1989). Erosion control strategies for bay and estuarine beaches. Coastal Management, 17, 25–35. https://doi.org/10.1080/08920758909362072

    Article  Google Scholar 

  51. Nordstrom, K. F., & Jackson, N. L. (1993). Distribution of surface pebbles with changes in wave energy on a sandy estuarine beach. Journal of Sedimentary Petrology, 63, 1152–1159. https://doi.org/10.1306/D4267CD0-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  52. Nordstrom, K. F., & Jackson, N. L. (2012). Physical processes and landforms on beaches in short fetch environments in estuaries, small lakes and reservoirs: A review. Earth-Science Reviews, 111, 232–247. https://doi.org/10.1016/j.earscirev.2011.12.004

    Article  Google Scholar 

  53. Oliveira Filho, S. R. (2016). Impactos morfológicos em praias oceânicas associados à ondas de tempestade: Exemplo do litoral centro-norte do Estado do Rio de Janeiro. Universidade Federal Fluminense, Niterói, Brasil.

    Google Scholar 

  54. Oliveira Filho, S. R., Santos, R. A., & Fernandez, G. B. (2020). Erosão e recuperação de praias refletivas de alta energia impactadas por ondas de tempestade geradas por ciclone tropical. Revista Brasileira De Geomorfologia, 21(20), 289–312.

    Google Scholar 

  55. Oliveira, U. R., Simões, R. S., Calliari, L. J., & Cavalcanti, B. G. (2019). Erosão de dunas sob ação de um evento extremo de alta energia de ondas na costa central e sul do Rio Grande do Sul, Brasil. Revista Brasileira De Geomorfologia, 20, 137–158.

    Article  Google Scholar 

  56. Oliveira, U. R., Simões, R. S., Porto, F. S., Caminha, E. S., Calliari, L. J., & Romeu, M. A. R. (2020a). Análise da dinâmica praial após a deposição de lama em 2014 na praia do cassino (RS, Brasil) utilizando aeronave remotamente pilotada. Revista Brasileira De Geomorfologia, 21, 677–695.

    Google Scholar 

  57. Oliveira, J. F., Scarelli, F. M., Manzolli, R. P., Portz, L. C., & Barboza, E. G. (2020b). Geomorphological Responses Due to Storm Wave Events at Praia da Barra, Garopaba – Santa Catarina State, Southern Brazil. Journal of Coastal Research, 95, 474–478. https://doi.org/10.2112/SI95-092.1

    Article  Google Scholar 

  58. Pranzini, E., Rosas, V., Jackson, N. L., & Nordstrom, K. F. (2013). Beach changes due to sediment delivered by streams to pocket beaches during a major flood. Geomorphology, 199, 36–47. https://doi.org/10.1016/j.geomorph.2013.03.034

    Article  Google Scholar 

  59. Pinheiro, A. B. (2018). Geomorfologia de praias e sensibilidade ambiental no litoral de Paraty (RJ) à potenciais eventos de derramamento de óleo. 2018. MSc Dissertation. Universidade do Estado do Rio de Janeiro – Faculdade de Formação de Professores, São Gonçalo, Brasil.

  60. Prado, M. F. V. (2016). Previsão dos regimes de impactos gerados por tempestades sobre o sistema praial e a duna frontal. MSc Dissertation. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil.

  61. Ribeiro, M. G., Gomes, T. B., & Bulhões, E. M. R. (2016). Respostas morfodinâmicas e fisiográficas da zona costeira ao norte da bacia de campos frente à eventos de tempestade. Revista Tamoios, 12, 91–111.

    Article  Google Scholar 

  62. Rao, C. B. (1957). Beach erosion and concentration of heavy-mineral sands. Journal of Sedimentary Petrology, 27(2), 143–147.

    Google Scholar 

  63. Salgado, C. M., Peixoto, M. N. O., & Moura, J. R. S. (2007). Caracterização espaço temporal da chuva como subsídio à análise de episódios de enchentes no município de Angra dos Reis, RJ. Revista Geosul, 22, 7–26.

    Google Scholar 

  64. Sallenger, A. H. (2000). Storm impact scale for barrier islands. Journal of Coastal Research, 16, 890–895.

    Google Scholar 

  65. Silva, A. L. C., Gralato, J. C. A., Brum, T. C. F., Silvestre, C. P., Baptista, E. C. S., & Pinheiro, A. B. (2020). Dinâmica de praia e susceptibilidade às ondas de tempestades no litoral da Ilha Grande (Angra dos Reis -RJ). Journal of Human and Environment of Tropical Bays, 1, 9–44.

    Article  Google Scholar 

  66. Silva, A. L. C., Silva, M. A. M., Santos, C. L., Ribeiro, G. P., Santos, R. A., & Vasconcelos, S. C. (2008). Retrogradação da barreira arenosa e formação de leques de arrombamento na praia de Itaipuaçú (oeste de Maricá, RJ). Revista Brasileira De Geomorfologia, 9, 75–82.

    Article  Google Scholar 

  67. Silva, M. A. M., Silva, A. L. C., Santos, C. L., Silvestre, C. P., Antonio, R. V. M., Cunha, A. B. C., Gralato, J. C. A., & Souza, R. D. (2016). Praias da Baía de Guanabara no Estado do Rio de Janeiro. Revista Brasileira De Geomorfologia, 17, 205–225.

    Google Scholar 

  68. Silveira, T. M., Taborda, R., Carapuço, M. M., Andrade, C., Freitas, M. C., Duarte, J. F., & Psuty, N. P. (2016). Assessing the extreme overwash regime along an embayed urban beach. Geomorphology, 274, 64–77. https://doi.org/10.1016/j.geomorph.2016.09.007

    Article  Google Scholar 

  69. Silvestre, C. P., Silva, A. L. C., Silva, M. A. M., & Rodrigues, A. R. (2015). Investigation of the internal structure and evolution of the holocene barrier of Maricá (Rio de Janeiro). Revista Brasileira De Geofísica, 33, 1–15.

    Article  Google Scholar 

  70. Souza, C. R. G. A. (2009). Erosão Costeira e os Desafios da Gestão Costeira no Brasil. Revista Da Gestão Costeira Integrada, 9, 17–37.

    Article  Google Scholar 

  71. Stein, L. P. (2018). Morfodinâmica de eventos de sobrelavagem: praias da baía de Santos, SP. MSc Dissertation. Universidade de São Paulo, São Paulo, Brasil.

  72. Switzer, A. D., Bristow, C. S., & Jones, B. G. (2006). Investigation of Large-scale washover of a small barrier system on the Southeast Australian coast using ground penetrating radar. Sedimentary Geology, 183, 145–156. https://doi.org/10.1016/j.sedgeo.2005.09.015

    Article  Google Scholar 

  73. Tanner, L. H. (1995). Armoured mud balls revisited. Journal of Atlantic Geology, 1, 123–125.

    Google Scholar 

  74. Tsoukala, V. K., Katsardi, V., Ηadjibiros, K., & Moutzouris, C. I. (2015). Beach erosion and consequential impacts due to the presence of harbours in Sandy Beaches in Greece and Cyprus. Environmental Processes, 2, 55–71. https://doi.org/10.1007/s40710-015-0096-0

    Article  Google Scholar 

  75. Vila-Concejoa, A., Gallopb, S. L., & Largier, J. L. (2020). Sandy beaches in estuaries and bays. In D. W. T. Jackson & A. D. Short (Eds.), Sandy beach morphodynamics (pp. 343–362). Elsevier.

    Chapter  Google Scholar 

  76. Villena, H. H., Pereira, S. D., Geraldes, M. C., Chaves, H. A. F., Herms, F. W., Ferreira, M. G., Almeida, E. R., Barros, I. P., & Mafia, J. R. (2013). Morfologia de fundo e cobertura sedimentar da Baía de Paraty. Revista Interações Homem-Meio Nas Zonas Costeiras Brasil/portugal, 1, 263–277.

    Google Scholar 

  77. Wang, P., & Horwitz, M. H. (2007). Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes. Sedimentology, 54, 545–564. https://doi.org/10.1111/j.1365-3091.2006.00848.x

    Article  Google Scholar 

  78. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.

    Article  Google Scholar 

  79. Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846. https://doi.org/10.1126/science.1116448

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES) for the doctoral scholarship granted to student Ana Beatriz Pinheiro (n ° 88882456606 / 2019-01). Also, the Post-graduate program in Earth and Ocean Dynamics (Programa de Pós-graduação em Dinâmica dos Oceanos e da Terra) at UFF and the Coastal Studies Group (Grupo de Estudos Costeiros—GECOST) of FFP-UERJ for all the support given in carrying out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to André Luiz Carvalho da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, A.B., da Silva, A.L.C. & Neto, J.A.B. Dynamics and storm records on sheltered beaches: Paraty, southeast coast of Brazil. J. Sediment. Environ. (2021). https://doi.org/10.1007/s43217-021-00075-2

Download citation

Keywords

  • Dynamics
  • Beach erosion
  • Washover fans
  • Paraty