Skip to main content

Bulk rock and mineral chemistry of meta-sediments from Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone: constraints on weathering, provenance, paleoclimate and metamorphism

Abstract

The Mahakoshal Supracrustal Belt (MSB) is located at the northern boundary of Central Indian Tectonic Zone (CITZ). The Volcano-sedimentary succession of MSB is underlain by the basement Sidhi gneiss and Dudhi granitic gneiss and overlain by later intrusives, compositionally varying from granitoids to monzodiorite-quartz-syenite to syenite. Present study involves detailed bulk rock geochemical and mineral chemical studies of the fine clastics from this volcano-sedimentary sequence. This study indicates that fine clastics of MSB have wide range of chemical characteristics, which may indicate mixed precursors. In comparison with established shale standards (Post-Archean Average Shale, North American Shale Composite), it can be inferred that all these fine clastics have mixed precursors. An important observation is that all these clastics of Sleemanabad, Parsoi Formation (Fm) are immature sediments derived from least altered source rocks and have witnessed insignificant post-depositional perturbations, except for the Garnetiferous schists exposed near the southern margin of Mahakoshal Supracrustal Belt. Therefore, their elemental signatures may reflect pristine characteristics with mixed intermediate-mafic precursors for Sleemanabad Fm, at Sidhi, and dominantly felsic to intermediate precursors for the rest of the groups including Parsoi Fm, Garnetiferous schist, Sleemanabad Fm, at Jabalpur. Based on mineral chemical data for the Garnetiferous schist, calculated temperature for metamorphism using garnet-biotite thermometer ranges from 434° to 635 °C with a minimum average temperature of 510 °C and using Ti in biotite geothermometer are 550 °C and 600 °C. It is inferred that the possible repositories for all the parental masses are from the CITZ, therefore, the catchment of MSB basin was restricted within CITZ. It is also geochemically ascertained that the entire sedimentation within this basin took place in oxygen-rich, semi-arid to arid climate, thus concordant with globally recorded Paleoproterozoic oxygenation event.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Availability of data and material

The detailed data sheets and the material are available for open access in Public domain.

References

  1. Ahmad, T., Longjam, K. C., Fouzdar, B., Bickle, M. J., & Chapman, H. J. (2009). Petrogenesis and tectonic setting of bimodal volcanism in the Sakoli Mobile Belt, Central Indian shield. Island Arc, 18, 155–174. https://doi.org/10.1111/j.1440-1738.2008.00651.x

    Article  Google Scholar 

  2. Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., & Ramasamy, S. (2004). Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering, and tectonic setting. Journal of Sedimentary Research, 74(2), 285–297. https://doi.org/10.1306/082803740285

    Article  Google Scholar 

  3. Asiedu, D. K., Agoe, M., Amponsah, P. O., Nude, P. M., & Anani, C. Y. (2019). Geochemical constraints on provenance and source area weathering of metasedimentary rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, southeastern margin of the West African Craton. Geodinamica Acta, 31(1), 27–39. https://doi.org/10.1080/09853111.2019.1670414

    Article  Google Scholar 

  4. Bekker, A., Holland, H. D., Wang, P.-L., Rumble Ill, D., Stein, H. J., Hannah, J. L., Coetzee, L. L., & Beukes, N. J. (2004). Dating the rise of atmospheric oxygen. Nature, 427, 117–120. https://doi.org/10.1038/nature02260

    Article  Google Scholar 

  5. Bhat, M. I., & Ghosh, S. K. (2001). Geochemistry of the 2.51 Ga old Rampur Group pelites, western Himalayas: Implications for their provenance and weathering. Precambrian Research, 108, 1–16. https://doi.org/10.1016/S0301-9268(00)00139-X

    Article  Google Scholar 

  6. Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., & Raith, M. (1992). Non-ideal mixing in the phlogopite-annite binary: Constraints from experimental data on Mg–Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology, 111(1), 87–93.

    Article  Google Scholar 

  7. Bhattacharya, S., Chaudhary, A. K., & Basai, M. (2010). Original nature and source of khondalites in the Eastern Ghats province India. Geological Society London Special Publications., 365, 147–159. https://doi.org/10.1144/SP365.8

    Article  Google Scholar 

  8. Bucher, K., & Fery, M. (1994). Petrogenesis of Metamorphic Rocks (6th ed., p. 318). Berlin: Springer-Verlag.

    Book  Google Scholar 

  9. Bucher, K., & Grapes, R. (2011). Petrogenesis of Metamorphic Rocks (p. 441). Springer-Verlag.

    Book  Google Scholar 

  10. Chauhan, H., Tripathi, A., Pandit, D., Rao, N. C., & Ahmad, T. (2020). A new analytical protocol for high precision U–Th–Pb chemical dating of xenotime from the TTG gneisses of the Bundelkhand Craton, central India, using CAMECA SXFive Electron Probe Micro Analyzer. Journal of Earth System Science, 129(1), 1–10. https://doi.org/10.1007/s12040-020-01482-1

    Article  Google Scholar 

  11. Condie, K. C., & Wronkiewicz, D. J. (1990). The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters, 97, 256–267. https://doi.org/10.1016/0012-821X(90)90046-Z

    Article  Google Scholar 

  12. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mud rock chemistry in the south-western United States. Geochimica Et Cosmochimica Acta, 59(14), 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  13. Cullers, R. L. (2000). The geochemistry of shales, siltstones, and sandstones of Pennsylvanian–Permian age Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51(3), 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  14. Dar, S. A., Khan, K. F., & Mir, A. R. (2020). Provenance and paleo-weathering of Paleoproterozoic siliciclastic sedimentary rocks of Bijawar Group, Sonrai Basin, Uttar Pradesh, India: Using a geochemical approach. Journal of Sedimentary Environments. https://doi.org/10.1007/s43217-020-00024-5

    Article  Google Scholar 

  15. Dasgupta, S., Sengupta, P., Guha, D., & Fukuoka, M. (1991). A refined garnet-biotite Fe–Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology, 109(1), 130–137. https://doi.org/10.1007/BF00687206

    Article  Google Scholar 

  16. Deer, W. A., Howie, R. A., & Zussman, J. (1997a). Rock forming minerals. Double-chain silicates, vol 2B (II, p. 764). The Geological society of London.

    Google Scholar 

  17. Deer, W. A., Howie, R. A., & Zussman, J. (1997b). Rock-Forming Minerals. Single-Chain Silicates vol 2A (2nd ed., p. 668). Longmans.

    Google Scholar 

  18. Dymek, R. F. (1983). Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses’ West Greenland. American Mineralogist, 6, 880–899. https://doi.org/10.11153/2191

    Article  Google Scholar 

  19. Engel, A. J., & Engel, C. G. (1960). Progressive Metamorphism and Granitization of the Major Paragniess, Northwest Adirondack Mountains, New York: Part II: Mineralogy. Geological Society of America Bulletin, 71(1), 1–58. https://doi.org/10.1130/0016-7606(1960)71[1:PMAGOT]2.0.CO;2

    Article  Google Scholar 

  20. Ferry, J. M., & Spear, F. S. (1978). Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66(2), 113–117. https://doi.org/10.1007/BF00372150

    Article  Google Scholar 

  21. Floyd, P. A., & Leveridge, B. E. (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbidite sandstones. Journal of the Geological Society of London, 144(4), 531–542. https://doi.org/10.1144/gsjgs.144.4.0531

    Article  Google Scholar 

  22. Floyd, P. A., Winchester, J. A., & Park, R. G. (1989). Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch NW Scotland. Precambrian Research, 45(1–3), 203–214. https://doi.org/10.1016/0301-9268(89)90040-5

    Article  Google Scholar 

  23. Garrels, R. M., & Mackenzie, F. T. (1971). The Evolution of Sedimentary Rocks. W.W. Norton.

    Google Scholar 

  24. Garcia, D., Fonteilles, M., & Moutte, J. (1994). Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. The Journal of Geology, 102(4), 411–422. https://doi.org/10.1086/629683

    Article  Google Scholar 

  25. Guo, Q., Shields, G. A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T., & Yang, X. (2007). Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organo sedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2), 194–216. https://doi.org/10.1016/j.palaeo.2007.03.016

    Article  Google Scholar 

  26. Hallberg, R. O. (1976). A geochemical method for investigation of palaeoredox conditions in sediments. Ambio, 4, 139–147. Special Report.

    Google Scholar 

  27. Harris, L. B. (1993). Correlations between the Central Indian Tectonic Zone and the Albany Mobile Belt of Western Australia: Evidence for a continuous Proterozoic orogenic belt. In R. H. Findlay, R. Unrug, M. R. Banks, & J. J. Veevers (Eds.), Gondwana: Assembly, Evolution and Dispersal (pp. 165–180). A.A. Balkema.

    Google Scholar 

  28. Harris, L. B., & Beeson, J. (1993). Gondwana land significance of lower Palaeozoic deformation in central India and SW Western Australia. Journal of Geological Society of London, 150, 811–814. https://doi.org/10.1144/gsjgs.150.5.0811

    Article  Google Scholar 

  29. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohomoto, H. (1997). Geochemistry of∼1.9 Ga sedimentary rocks from northern Labrador Canada. Geochimica Et Cosmochimica Acta, 61(19), 4115–4137. https://doi.org/10.1016/s0016-7037(97)00214-7

    Article  Google Scholar 

  30. Henry, D. J., Guidotti, C. V., & Thomson, J. A. (2005). The Ti-saturation surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2–3), 316–328. https://doi.org/10.2138/am.2005.1498

    Article  Google Scholar 

  31. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research, 58(5), 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  32. Hodges, K. V., & Spear, F. S. (1982). Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke New Hampshire. American Mineralogist, 67(11–12), 1118–1134.

    Google Scholar 

  33. Holdaway, M. J., & Lee, S. M. (1977). Fe–Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observations. Contributions to Mineralogy and Petrology, 63(2), 175–198. https://doi.org/10.1007/BF00398778

    Article  Google Scholar 

  34. Jacobson, A. D., Blum, J. D., Chamberlain, C. P., Craw, D., & Koons, P. O. (2003). Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochimica Et Cosmochimica Acta, 67, 29–46. https://doi.org/10.1016/S0016-7037(02)01053-0

    Article  Google Scholar 

  35. Jones, B., & Manning, D. C. (1994). Comparison of geochemical indices used for the interpretation of paleo-redox conditions in Ancient mudstones. Chemical Geology, 111(1–4), 111–129. https://doi.org/10.1016/0009-2541(94)90085-X

    Article  Google Scholar 

  36. Kwak, T. A. (1968). Ti in biotite and muscovite as an indication of the metamorphic grade in almandine amphibolite facies rocks from Sudbury Ontario. Geochimica Et Cosmochimica Acta, 32(11), 1222–1229. https://doi.org/10.1016/0016-7037(68)90124-5

    Article  Google Scholar 

  37. Longjam, K. C., & Ahmad, T. (2012). Geochemical characterization and petrogenesis of Khairagarh volcanics: Implications for Precambrian crustal evolution. Geological Journal, 47(2–3), 130–143. https://doi.org/10.1002/gj.1312

    Article  Google Scholar 

  38. Moosavirada, S. M., Janardhanab, M. R., Sethumadhava, M. S., Moghadamc, M. R., & Shankara, M. (2011). Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, source weathering and tectonic setting. Chemie Der Erde., 71, 279–288. https://doi.org/10.1016/j.chemer.2010.10.001

    Article  Google Scholar 

  39. McCulloch, M. T., & Wasserburg, G. J. (1978). Sm-Nd and Rb-Sr chronology of continental crust formation. Science, 200(4345), 1003–1011. https://doi.org/10.1126/science.200.4345.1003

    Article  Google Scholar 

  40. Mclennan, S. M., Fryer, B. J., & Young, G. M. (1979). The geochemistry of the carbonate-rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Canadian Journal of Earth Sciences, 16(2), 230–239. https://doi.org/10.1139/e79-022

    Article  Google Scholar 

  41. McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance and tectonics. In: Johnsson, M.J., & Basu, A. (Eds.), Processes Controlling the Composition of Clastic Sediments (pp. 21–40). Geological Society of America Special Paper 285, https://doi.org/10.1130/SPE284-p21.

  42. Mishra, M.K., Devi, S.J., Kaulina, T., Dass, K.C., Kumar, S., & Ahmad, T. (2011). Petrogenesis and tectonic setting of the proterozoic mafic magmatic rocks of the Central Indian Tectonic Zone, Betul Area: Geochemical Constraints. In: Srivastava, R.K. (Ed.), Dyke Swarms: Keys for Geodynamic Interpretation (pp. 189–201). Springer-Verlag, https://doi.org/10.1007/978-3-642-12496-9.

  43. Mohanty, S. (2010). Tectonic evolution of the Satpura Mountain Belt: A critical evaluation and implication on supercontinent assembly. Journal of Asian Earth Sciences, 39(6), 516–526. https://doi.org/10.1016/j.jseaes.2010.04.025

    Article  Google Scholar 

  44. Mondal, M.E.A., Deomurari, M.P., Goswami, J.N., Rahman, A., & Sharma, K.K. (1997). 207Pb/206Pb zircon ages of samples from the Bundelkhand massif, central India (Abstract). In: International Conference on Isotopes in Solar Systems, Ahmedabad, India.

  45. Mondal, M. E. A., Goswami, J. N., Deomurari, M. P., & Sharma, K. K. (2002). Ion microprobe 207Pb/206Pb ages of zircon from the Bundelkhand massif, northern India: Implication for crustal evolution of the Bundelkhand–Aravalli protocontinent. Precambrian Research, 117, 85–100. https://doi.org/10.1016/S0301-9268(02)00078-5

    Article  Google Scholar 

  46. Mondal, M. E. A., Sharma, K. K., Rahman, A., & Goswami, J. N. (1998). Ion microprobe 207Pb/206Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: Evidence for Archean components. Current Science, 74, 70–75.

    Google Scholar 

  47. Nagarajan, R., Madhavaraju, J., Nagendra, R., Selvamony, J., Armstrong-Altrin, J. S., & Moutte, J. (2007). Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana De Ciencias Geologicas, 24(2), 150–160.

    Google Scholar 

  48. Nair, K. K. K., Jain, S. C., & Yedekar, D. B. (1995). Stratigraphy, structure and geochemistry of the Mahakoshal greenstone belt. Geological Society of India, Memoir, 31, 403–432.

    Google Scholar 

  49. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  50. Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48(7), 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  51. Paikaray, S., Banerjee, S., & Mukherji, S. (2008). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32(1), 34–48. https://doi.org/10.1016/j.jseaes.2007.10.002

    Article  Google Scholar 

  52. Pandey, R., Chalapthi Rao, N. V., Pandit, D., Sahoo, S., & Dhote, P. (2017a). Imprints of modal metasomatism in the post-Deccan sub-continental lithospheric mantle: Petrological evidence from the ultramafic xenoliths in an Eocene lamprophyre, NW India. Geological Society of London Special Publication, 463(1), 117–136. https://doi.org/10.1144/SP463.6

    Article  Google Scholar 

  53. Pandey, A., Chalapathi Rao, N. V., Pandit, D., Pankaj, P., Pandey, R., Sahoo, S., & Kumar, A. (2017b). Subduction – Tectonics in the evolution of the eastern Dharwar craton, southern India: Insights from the post-collisional calc-alkaline lamprophyres at the western margin of the Cuddapah basin. Precambrian Research, 298, 235–251. https://doi.org/10.1016/j.precamres.2017.06.004

    Article  Google Scholar 

  54. Pandey, M., Pandit, D., Arora, D., Chalapathi Rao, N. V., & Pant, N. C. (2019). Analytical protocol for U–Th–Pb chemical dating of monazite using CAMECA EPMA SX5 installed at the Deep Mantle Petrology Laboratory, Department of Geology, Banaras Hindu University, Varanasi, India. Journal of Geological Society of India, 93, 46–50. https://doi.org/10.1007/s12594-019-1119-7

    Article  Google Scholar 

  55. Patiño Douce, A. E. (1993). Titanium substitution in biotite: An empirical model with applications to thermometry, O2, and H2O barometries, and consequences form biotite stability. Chemical Geology, 108, 133–162. https://doi.org/10.1016/0009-2541(93)90321-9

    Article  Google Scholar 

  56. Perchuk, L. L., & Lavrent’Eva, I. V. (1983). Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. Kinetics and equilibrium in mineral reactions (pp. 199–239). Springer.

    Chapter  Google Scholar 

  57. Ramachandra, H. M., & Roy, A. (2001). Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar Mobile Belt of Central India. Proceedings of the Indian Academy of Sciences (earth Planetary Science), 110(4), 351–368. https://doi.org/10.1007/BF02702900

    Article  Google Scholar 

  58. Ramakrishnan, M., & Vaidyanadhan, R. (2008). Geology of India, volume 1. Geological Society of India, p 994. ISBN No: 978-81-85867-98-4.

  59. Raza, A., & Mondal, M. E. A. (2018). Geochemistry of the Archaean metasedimentary rocks of the Bundelkhand Mauranipur-Babina greenstone belt, central India: Implications for provenance characteristics. Journal of Indian Association of Sedimentologists, 35(1), 57–76.

    Google Scholar 

  60. Robert, J. L. (1976). Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17, 213–227. https://doi.org/10.1016/0009-2541(76)90036-X

    Article  Google Scholar 

  61. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  62. Roser, B. P., & Korsch, R. J. (1999). Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: The Torlesseterrane New Zealand. Geological Magazine, 136(5), 493–512. https://doi.org/10.1017/S0016756899003003

    Article  Google Scholar 

  63. Roy, A., & Bandyopadhyay, B. K. (1989). Geology and geochemistry of metabasalt near Sleemanabad in the Proterozoic Mahakoshal belt of Central India. Indian Minerals, 43, 303–324.

    Google Scholar 

  64. Roy, A., & Bandyopadhyay, B. K. (1990). Tectonic and structural pattern of the Mahakoshal belt of Central India: A discussion. Geological Survey of India, Special Publication, 28, 226–240.

    Google Scholar 

  65. Roy, A., & Devarajan, M.K. (2000). A reappraisal of the stratigraphy and tectonics of the Proterozoic Mahakoshal belt, Central India. In: Precambrian crust of eastern and Central India. IGCP-368 (pp. 79–97). Geological Survey of India, Special Publication, 57.

  66. Roy, A., Devarajan, M. K., & Hanuma Prasad, M. (2002). Ductile shearing and syntectonic granite emplacement along the southern margin of the Palaeoproterozoic Mahakoshal supracrustal belt: Evidence from Singrauli Area, Madhya Pradesh. Journal of Geological Society of India, 59, 9–21.

    Google Scholar 

  67. Roy, A., & Hanuman Prasad, M. (2003). Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinia crustal assembly. Journal of Asian Earth Science, 22, 115–129. https://doi.org/10.1016/S1367-9120(02)00180-3

    Article  Google Scholar 

  68. Sadegh, H. R., Moeinzadeh, H., & Nakashima, K. (2019). Geochemistry, mineral chemistry and PT evaluation of metasediments of Bahram-Gur complex, ES Sanandaj-Sirjan zone Iran. Mineralogia, 50(1–4), 34–68.

    Article  Google Scholar 

  69. Sarkar, A., Bodas, M.S., Kundu, H.K., Mamgain, V.D., & Shanker, R. (1998). Geochronology and geochemistry of Mesoproterozoic intrusive plutonites from the eastern segment of the Mahakoshal greenstone belt, Central India (abstract). In: International National Seminar on Precambrian crust in Eastern and Central India, UNESCO-IUGS-IGCP 368 (pp. 82–86). Geological Society of India.

  70. Schieber, J. (1992). A combined petrographical-geochemical provenance study of the Newland formation, Mid-Proterozoic of Montana. Geological Magazine, 129(2), 223–237. https://doi.org/10.1017/S0016756800008293

    Article  Google Scholar 

  71. Sharma Ram S. (2009). Cratons and fold belts of India. Springer-Verlag, 201 p., e-book ISBN 978-3-642-01459-8.

  72. Spear, F.S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths (vol. 1): Mineralogical Society of America, 799 p., ISBN 0-939950-34-0.

  73. Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and palaeoclimate. 1. Framework mineralogy. Journal of Sedimentary Research, 56(3), 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  74. Taylor, S.R., & McLennan, S.M. (1985). The Continental Crust: its Composition and Evolution. Blackwell, 311 p., ISBN 0632011483.

  75. Thompson, P. H. (1976). Isograd patterns and pressure-temperature distributions during regional metamorphism. Contributions to Mineralogy and Petrology, 57(3), 277–295. https://doi.org/10.1007/BF03542938

    Article  Google Scholar 

  76. Uchida, E., Endo, S., & Makino, M. (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57(1), 47–56. https://doi.org/10.1111/j.1751-3928.2006.00004.x

    Article  Google Scholar 

  77. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica Et Cosmochimica Acta, 51(9), 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6

    Article  Google Scholar 

  78. Yadav, B.S. (2017), U–Pb Geochronology, Geochemistry and Nd-Isotopic constraints on the petrogenesis and tectonic settings of Paleoproterozoic granitoids from Mahakoshal Supracrustal Belt (MSB), Central Indian Tectonic Zone (CITZ). PhD Thesis, University of Delhi, Delhi.

  79. Yadav, B. S., Ahmad, T., Kaulina, T., Bayanova, T., & Bhutani, R. (2020). Origin of post-collisional A-type granites in the Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone, India: Zircon U-Pb ages and geochemical evidences. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2020.104247

    Article  Google Scholar 

  80. Yedekar, D. B., Jain, S. C., Nair, K. K. K., & Dutta, K. K. (1990). The central Indian collision suture. Precambrian of Central India (Vol. 28, pp. 1–43). Geological Survey of India Special Publication.

    Google Scholar 

  81. Yousuf, I., Subba Rao, D. V., Balakrishnan, S., & Ahmad, T. (2019). Geochemistry and petrogenesis of acidic volcanics from Betul-Chhindwara Belt, Central Indian Tectonic Zone (CITZ) Central India. Journal of Earth System Science, 128, 227. https://doi.org/10.1007/s12040-019-1255-x

    Article  Google Scholar 

  82. Yousuf, I. (2020). Geochemistry, Geochronology, Petrogenesis and Tectonic Setting of Proterozoic Bimodal Volcanism of Betul-Chhindwara Belt, Central Indian Tectonic Zone, PhD Thesis, University of Delhi, Delhi.

Download references

Acknowledgements

Immense gratitude is expressed towards the Head of Department, Department of Geology, Delhi University for the infrastructural support. The special thanks are conveyed to the Director, Inter-University Accelerator Centre, New Delhi for encouragements to HC. University Grants Commission (UGC), DS Kothari fellowship, application number- ES/19-20/0011 is gratefully acknowledged by HC to carry out this research work. Dr. A. K. Chaudhari, ICPMS Lab, IIT, Roorkee is also acknowledged for REE analysis. The authors also gratefully acknowledge Prof. N.V Chalapathi Rao for EPMA analysis at DST-SERB National facility, Department of Geology (Center of Advanced Study), Institute of Science, Banaras Hindu University. The authors also express their heartfelt thanks to Director General, Geological Survey of India; Additional Director General & HOD, Geological Survey of India, Central Region; Deputy Director General, Geological Survey of India, SU: MP for providing encouragement for publishing the findings of the research carried out at Delhi University. The authors are also grateful to the reviewers for their valuable comments for enrichment and development of the manuscript.

Funding

This work was supported by student fellowships and the fellowship for University teaching assistant granted to SS by Delhi University during year 2010 & 2011. The authors declare they have no financial interests in Publication of the enclosed research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shradha Shukla.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that is relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Chauhan, H., Yousuf, I. et al. Bulk rock and mineral chemistry of meta-sediments from Mahakoshal Supracrustal Belt, Central Indian Tectonic Zone: constraints on weathering, provenance, paleoclimate and metamorphism. J. Sediment. Environ. (2021). https://doi.org/10.1007/s43217-021-00074-3

Download citation

Keywords

  • Mahakoshal Supracrustal Belt (MSB)
  • Central Indian Tectonic Zone (CITZ)
  • Phyllite geochemistry
  • Precambrian environment
  • First oxygenation event