Skip to main content

Provenance, palaeoweathering and tectonic setting of the Kuldhar Member Shale (Callovian–Oxfordian), Jaisalmer Formation, western Rajasthan

Abstract

The geochemistry of the Kuldhar Member Shale (Callovian-Oxfordian), Jaisalmer Formation, western Rajasthan has been investigated to identify the source rock characteristics, palaeoweathering and tectonic setting of the source area. The Kuldhar Member Shale has higher concentration of SiO2, CaO, Fe2O3, Al2O3, K2O and classified as Fe-shale. The positive correlation of Al2O3 with other oxides apart from CaO suggests that these elements are primarily associated with micaceous/clay minerals. The Kuldhar Member Shale shows slightly light rare-earth element (LREE)-enriched and flat heavy rare-earth element (HREE) patterns with negative Eu anomaly, and are similar to granitic rocks from Precambrian Aravalli Craton situated in the southeast and some minor contribution from the Malani Igneous Suits (MIS) in the south of the basin. Provenance modelling indicates that the Kuldhar Member Shale is best modelled with a mixture having 59.5% Aravalli Supergroup rocks, 25% Delhi Supergroup rocks (North Delhi Fold Belt), 14% Banded Gneissic Complex (BGC) and 1.5% Malani Igneous Suits (MIS). The chemical index of alteration (CIA), index of compositional variability (ICV) and the A-CN-K diagram of the Kuldhar Member Shale suggests that the source area experienced moderate to high degree of chemical weathering under warm and humid climatic conditions. The shift of sediment source from distal in the beginning to local during later period suggests sedimentation in a tectonically active basin.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Absar, N., Raza, M., Roy, M., Naqvi, S. M., & Roy, A. K. (2009). Composition and weathering conditions of palaeoproterozoic upper crust of Bundelkhand Craton, Central India: Records from geochemistry of clastic sediments of 1.9 Gwalior Group. Precambrian Research, 168, 313–329. https://doi.org/10.1016/j.precamres.2008.11.001

    Article  Google Scholar 

  2. Absar, N., & Sreenivas, B. (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes. International Geology Review, 57(2), 134–158. https://doi.org/10.1080/00206814.2014.999355

    Article  Google Scholar 

  3. Ahmad, A. H. M., Alam, M. M., & Khan, M. H. A. (2000). Texture and Petrofacies Analysis of Sandstones of Lathi Formation (Early Jurassic), Western Rajasthan. Indian Journal of Petroleum Geology, 9(2), 59–70.

    Google Scholar 

  4. Ahmad, F., Ahmad, A. H. M., & Quasim, M. A. (2017a). Diagenetic features of Jurassic Fort Member Sandstone, Jaisalmer Formation, Western Rajasthan. Journal of the Geological Society of India, 90(3), 273–282. https://doi.org/10.1007/s12594-017-0715-7

    Article  Google Scholar 

  5. Ahmad, F., Quasim, M. A., Ghaznavi, A. A., Khan, Z., & Ahmad, A. H. M. (2017b). Depositional environment of the Fort Member of the Jurassic Jaisalmer Formation (western Rajasthan, India), as revealed from lithofacies and grain-size analysis. Geologica Acta, 15(3), 153–167. https://doi.org/10.1344/GeologicaActa2017.15.3.1

    Article  Google Scholar 

  6. Ahmad, F., Quasim, M. A., & Ahmad, A. H. M. (2020a). Lithofacies characteristics and depositional environment interpretations of the Middle Jurassic Fort Member rocks, Jaisalmer Formation, Western Rajasthan, India. Journal of Sedimentary Environments, 5(3), 355–373. https://doi.org/10.1007/s43217-020-00023-6

    Article  Google Scholar 

  7. Ahmad, F., Quasim, M. A., Ahmad, A. H. M., Rehman, S. M., & Asjad, S. (2020b). Depositional mechanism of Fort Member Sandstone (Early-Late Bathonian), Jaisalmer Formation, Western Rajasthan: Insights from granulometric analysis. Geology, Ecology, and Landscapes, 5(2), 119–135. https://doi.org/10.1080/24749508.2020.1833642

    Article  Google Scholar 

  8. Ahmad, F., Quasim, M. A., & Ahmad, A. H. M. (2021). Microfacies and diagenetic overprints in the limestones of Middle Jurassic Fort Member (Jaisalmer Formation), Western Rajasthan, India: Implications for the depositional environment, cyclicity, and reservoir quality. Geological Journal, 56(1), 130–151. https://doi.org/10.1002/gj.3945

    Article  Google Scholar 

  9. Alberti, M., Pandey, D. K., Sharma, J. K., Swami, N. K., & Uchman, A. (2017). Slumping in the upper Jurassic Baisakhi formation of the Jaisalmer Basin, western India: Sign of synsedimentary tectonics? Journal of Palaeogeography, 6(4), 321–332. https://doi.org/10.1016/j.jop.2017.08.001

    Article  Google Scholar 

  10. Armstrong-Altrin, J. S., Lee, Y. I., Kasper-Zubillaga, J. J., Carranza-Edwards, A., Garcia, D., Eby, G. N., & Cruz-Ortiz, N. L. (2012). Geochemistry of beach sands along the western Gulf of Mexico, Mexico: Implication for provenance. Geochemistry, 72(4), 345–362. https://doi.org/10.1016/j.chemer.2012.07.003

    Article  Google Scholar 

  11. Armstrong-Altrin, J. S., Nagarajan, R., Lee, Y. I., Kasper-Zubillaga, J. J., & Cordoba-Saldana, L. P. (2014). Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California Mexico: Implications for provenance and tectonic setting. Turkish Journal of Earth Sciences, 23, 533–558. https://doi.org/10.3906/yer-1309-21

    Article  Google Scholar 

  12. Armstrong-Altrin, J. S., Ramos-Vázquez, M. A., Zavala-León, A. C., & Montiel-García, P. C. (2018). Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geological Journal, 53(6), 2824–2848. https://doi.org/10.1002/gj.3122

    Article  Google Scholar 

  13. Armstrong-Altrin, J. S., & Verma, S. P. (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology, 177, 115–129. https://doi.org/10.1016/j.sedgeo.2005.02.004

    Article  Google Scholar 

  14. Bhat, M. I., & Ghosh, S. K. (2001). Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precambrian Research, 108(1–2), 1–16. https://doi.org/10.1016/S0301-9268(00)00139-X

    Article  Google Scholar 

  15. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91, 611–627. https://doi.org/10.1086/628815

    Article  Google Scholar 

  16. Bhatia, M. R., & Crook, K. A. W. (1986). Trace elements characteristics of greywacke and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  17. Cox, R., Lowe, D. R., & Cullers, R. L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica Et Cosmochimica Acta, 59, 2919–2940. https://doi.org/10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  18. Cullers, R. L. (1994). The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the Wet Mountains region, USA. Chemical Geology, 113, 327–343. https://doi.org/10.1016/0009-2541(94)90074-4

    Article  Google Scholar 

  19. Cullers, R. L., & Graf, J. (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In P. Henderson (Ed.), Rare-earth geochemistry (pp. 275–312). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50013-7

    Chapter  Google Scholar 

  20. Das Gupta, S. K. (1975). A revision of the Mesozoic- Tertiary stratigraphy of the Jaisalmer Basin, Rajasthan. Indian Journal of Earth Sciences, 2(1), 77–94.

    Google Scholar 

  21. Dickinson, W. R., & Suczek, C. A. (1979). Plate tectonics and sandstone compositions. American Association of Petroleum Geologists Bulletin, 63, 2164–2182. https://doi.org/10.1306/2F9188FB-16CE-11D7-8645000102C1865D

    Article  Google Scholar 

  22. Eby, N., & Kochhar, N. (1990). Geochemistry and petrogenesis of the Malani igneous suite, North Peninsular India. Journal of the Geological Society of India, 36(2), 109–130.

    Google Scholar 

  23. Ekosse, G. (2001). Provenance of the Kgwakgwe kaolin deposit in Southeastern Botswana and its possible utilization. Applied Clay Science, 20(3), 137–152. https://doi.org/10.1016/S0169-1317(01)00064-3

    Article  Google Scholar 

  24. Eriksson, P. G., Martins-Neto, M. A., Nelson, D. R., Aspler, L. B., Chiarenzelli, J. R., Catuneanu, O., Sarkar, S., Altermann, W., & Rautenbach, C. J. W. (2001). An introduction to the Precambrian basins: Their characteristics and genesis. Sedimentary Geology, 141, 1–35. https://doi.org/10.1016/S0037-0738(01)00066-5

    Article  Google Scholar 

  25. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924. https://doi.org/10.1130/0091-7613(1995)023%3c0921:UTEOPM%3e2.3.CO;2

    Article  Google Scholar 

  26. Floyd, P. A., Shail, R., Leveridge, B. E., & Franke, W. (1990). Geochemistry and provenance of rhenohercynian synorogenic sandstone: Implications for tectonic environment discrimination. Geological Society, London, Special Publications, 57, 173–188. https://doi.org/10.1144/GSL.SP.1991.057.01.14

    Article  Google Scholar 

  27. Ghaznavi, A. A., Khan, I., Quasim, M. A., & Ahmad, A. H. M. (2018). Provenance, tectonic setting, source weathering and palaeoenvironmental implications of Middle-Upper Jurassic rocks of Ler dome, Kachchh, western India: Inferences from petrography and geochemistry. Geochemistry, 78(3), 356–371. https://doi.org/10.1016/j.chemer.2018.06.002

    Article  Google Scholar 

  28. Harnois, L. (1988). The CIW, Index: A new chemical index of weathering. Sedimentary Geology, 55, 319–322. https://doi.org/10.1016/0037-0738(88)90137-6

    Article  Google Scholar 

  29. Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  30. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  31. Hofmann, A. (2005). The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times. Precambrian Research, 143, 23–49. https://doi.org/10.1016/j.precamres.2005.09.005

    Article  Google Scholar 

  32. Jain, S. (2008). Integrated Jurassic biostratigraphy: A closer look at nannofossil and ammonite evidences from the Indian subcontinent. Current Science, 95(2), 326–331.

    Google Scholar 

  33. Kachhara, R.P. & Jodhawat, R.L. (1981).  Proceedings of IX Indian Colloquium on Micropalaeontology and Stratigraphy.

  34. Kanhaiya, S., Singh, B. P., & Singh, S. (2018). Mineralogical and geochemical behaviour of sediments solely derived from Bundelkhand Granitic Complex, Central India: Implications to provenance and source rock weathering. Geochemistry International, 56(12), 1245–1262. https://doi.org/10.1134/S0016702918120054

    Article  Google Scholar 

  35. Khan, S., Ahmad, A. H. M., Alam, M. M., & Quasim, A. (2016). Petrographical and geochemical signatures of Jurassic rocks of Chari Formation, Western India: Implications for provenance and tectonic setting. Acta Geochimica, 35(2), 184–202. https://doi.org/10.1007/s11631-015-0089-8

    Article  Google Scholar 

  36. Khan, Z., Quasim, M. A., Amir, M., & Ahmad, A. H. M. (2020). Provenance, tectonic setting, and source area weathering of Middle Jurassic siliciclastic rocks of Chari Formation, Jumara Dome, Kachchh Basin, Western India: Sedimentological, mineralogical, and geochemical constraints. Geological Journal, 55(5), 3537–3558. https://doi.org/10.1002/gj.3612

    Article  Google Scholar 

  37. Lukose, N.G. (1972). Palynological evidence on the age of Lathi Formation, Western Rajasthan, India. Proceeding of Seminar on Palaeopalynology and Indian Stratigraphy(1971), 155–159.

  38. McCulloch, M. T., & Wasserburg, G. J. (1978). Sm-Nd and Rb-Sr chronology of continental crust formation. Science, 200(4345), 1003–1011. https://doi.org/10.1126/science.200.4345.1003

    Article  Google Scholar 

  39. McLennan, S.M., Hemming, S., McDaniel, D.K., & Hanson, G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Special Papers-Geological Society of America, 21

  40. McLennan, S. M. (1989). Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21, 169–200. https://doi.org/10.1515/9781501509032-010

    Article  Google Scholar 

  41. McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1), 1–21.

    Article  Google Scholar 

  42. McLennan, S. M., Taylor, S. R., & Eriksson, K. A. (1983). Geochemistry of Archean shales from the Pilbara Supergroup Western Australia. Geochimica Et Cosmochimica Acta, 47, 1211–1222. https://doi.org/10.1016/0016-7037(83)90063-7

    Article  Google Scholar 

  43. Narayanan, K., Subrahmanyan, M., & Srinivasan, S. (1961). Geology of Jaisalmer. Unpublished report O.N.G.C.

    Google Scholar 

  44. Nesbitt, H. W., & Young, G. M. (1984). Predictions of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48, 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  45. Nesbitt, H. W., Young, G. M., McLennan, S. M., & Keays, R. R. (1996). Effects of chemical weathering and sorting on petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology, 104, 525–542. https://doi.org/10.1086/629850

    Article  Google Scholar 

  46. Paikaray, S., Banerjee, S., & Mukherji, S. (2008a). Geochemistry of lower Vindhyan Shales and its implications on provenance and tectonics. Indian Journal of Geology, 78, 143–157.

    Google Scholar 

  47. Paikaray, S., Banerjee, S., & Mukherji, S. (2008b). Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences, 32(1), 34–48. https://doi.org/10.1016/j.jseaes.2007.10.002

    Article  Google Scholar 

  48. Pandey, D. K., Fürsich, F. T., & Sha, J. (2009). Interbasinal marker intervals—A case study from the Jurassic basins of Kachchh and Jaisalmer, western India. Sciences in China Series d: Earth Sciences, 52(12), 1924–1931. https://doi.org/10.1007/s11430-009-0158-0

    Article  Google Scholar 

  49. Pandey, D., & Pooniya, D. (2015). Sequence stratigraphy of the Oxfordian to Tithonian sediments (Baisakhi Formation) in the Jaisalmer Basin. Volumina Jurassica, 13(1), 65–76. https://doi.org/10.5604/17313708.1148658

    Article  Google Scholar 

  50. Pandey, D. K., Sha, J., & Choudhary, S. (2006). Depositional history of the early part of the Jurassic succession on the Rajasthan Shelf, Western India. Progress in Natural Science (special Issue of IGCP 506 on the Jurassic Boundary Events), 16, 176–185.

    Google Scholar 

  51. Pandey, D. K., Sha, J., & Choudhary, S. (2010). Sedimentary cycles in the Callovian-Oxfordian of the Jaisalmer Basin, Rajasthan, western India. Volumina Jurassica, 8, 131–162.

    Google Scholar 

  52. Pareek, H. S. (1981). Basin configuration and sedimentary stratigraphy of western Rajasthan. Journal of the Geological Society of India, 22, 517–527.

    Google Scholar 

  53. Pareek, H. S. (1984). Pre-Quaternary Geology and Mineral Resources of north-western Rajasthan. Memoirs of the Geological Survey of India, 115, 1–99.

    Google Scholar 

  54. Pettijohn, F. J. (1975). Sedimentary rocks (2nd ed., p. 628). Harper and Row Publishers.

    Google Scholar 

  55. Quasim, M. A., Khan, I., & Ahmad, A. H. M. (2017). Integrated petrographic, mineralogical, and geochemical study of the Upper Kaimur Group of rocks, Son Valley, India: Implications for provenance, source area weathering and tectonic setting. Journal of the Geological Society of India, 90(4), 467–484. https://doi.org/10.1007/s12594-017-0740-6

    Article  Google Scholar 

  56. Raza, M., Ahmad, A. H. M. K., Shamim Feroz, M., & Khan, F. (2012). Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: Implications for provenance and source-area weathering. International Geology Review, 54(1), 111–129. https://doi.org/10.1080/00206814.2010.517044

    Article  Google Scholar 

  57. Raza, M., Dayal, A. M., Khan, A., Bhardwaj, V. R., & Khan, M. S. (2010). Geochemistry of Lower Vindhyan clastic sedimentary rocks of North-western Indian shield: Implications for composition and weathering history of Proterozoic continental crust. Journal of Asian Earth Sciences, 30, 51–61. https://doi.org/10.1016/j.jseaes.2010.02.007

    Article  Google Scholar 

  58. Rollinson, H. R. (1993). Using geochemical data: Evaluation, Presentation (p. 352). British Library Cataloguing-in-Publication.

    Google Scholar 

  59. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O:Na2O ratio. The Journal of Geology, 94, 635–650. https://doi.org/10.1086/629071

    Article  Google Scholar 

  60. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  61. Ryan, K. M., & Williams, D. M. (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chemical Geology, 242, 103–125. https://doi.org/10.1016/j.chemgeo.2007.03.013

    Article  Google Scholar 

  62. Singh, P.K. (2018). Geochemistry of clastic rocks of Udaipur belt, NW Indian shield: Implications for the depositional history and crustal evolution across Archean-Proterozoic boundary. Ph.D. Thesis Aligarh Muslim University, p 204.

  63. Singh, B. P., Andotra, D. S., & Kumar, R. (2000). Provenance of the lower Tertiary mudrocks in the Jammu Sub-Himalayan Zone, Jammu and Kashmir State (India), NW Himalaya and its tectonic implications. Geosciences Journal, 4(1), 1. https://doi.org/10.1007/BF02910208

    Article  Google Scholar 

  64. Srivastava, S. K. (1966). Jurassic microflora from Rajasthan, India. Micropalaeontology, 12(1), 87–103.

    Article  Google Scholar 

  65. Subbotina, N. N., Datta, A. K., & Srivastava, B. N. (1960). Foraminifera from the Upper Jurassic deposits of Rajasthan (Jaisalmer) and Kachchh, India. Bulletin of the Geological, Mining and Metallurgical Society of India, 23, 1–48.

    Google Scholar 

  66. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks (p. 312). Oxford: Blackwell Scientific.

    Google Scholar 

  67. Van de Kamp, P. C., & Leake, B. E. (1985). Petrography and geochemistry of feldspathic and mafic sediments of the north eastern Pacific margin. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 76(4), 411–449. https://doi.org/10.1017/S0263593300010646

    Article  Google Scholar 

  68. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.chemgeo.2013.07.014

    Article  Google Scholar 

  69. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12. https://doi.org/10.1016/j.sedgeo.2015.11.011

    Article  Google Scholar 

  70. Wang, T., Hong, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F., & Wang, X. X. (2006). Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6), 735–751. https://doi.org/10.1086/507617

    Article  Google Scholar 

  71. Weaver, C. E. (1989). Clays, muds, and shales (p. 818). Elsevier Science.

    Google Scholar 

  72. Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source area weathering and provenance. Geochimica Et Cosmochimica Acta, 51, 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6

    Article  Google Scholar 

  73. Zhong, Y., He, B., & Xu, Y. (2013). Mineralogy and geochemistry of claystones from the Guadalupian-Lopingian boundary at Penglaitan, South China: Insights into the pre-Lopingian geological events. Journal of Asian Earth Sciences, 62, 438–462. https://doi.org/10.1016/j.jseaes.2012.10.028

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Chairperson, Department of Geology, Aligarh Muslim University, Aligarh for providing necessary facilities in the Department. SA is grateful to the University Grants Commission (UGC), New Delhi, for the financial assistance in the form of Junior Research Fellowship (JRF). We are thankful to the anonymous reviewers for their useful comments that improved the quality of the manuscript. The editorial work of Professor Maria Virgínia Alves Martins (Editor-In-Chief, Journal of Sedimentary Environments) is highly appreciated.

Funding

The financial aid for the current work has been provided by the University Grants Commission (UGC), New Delhi, in the form of Junior Research Fellowship (JRF).

Author information

Affiliations

Authors

Contributions

SA and MAQ have carried out the field work. SA has processed the data. AHMA and HKS drafted the first outline of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shaikh Asjad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by M. V. Alves Martins.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asjad, S., Ahmad, A.H.M., Quasim, M.A. et al. Provenance, palaeoweathering and tectonic setting of the Kuldhar Member Shale (Callovian–Oxfordian), Jaisalmer Formation, western Rajasthan. J. Sediment. Environ. (2021). https://doi.org/10.1007/s43217-021-00072-5

Download citation

Keywords

  • Geochemistry
  • Provenance
  • Palaeoweathering
  • Kuldhar Member
  • Jaisalmer Formation