Skip to main content

Metals in sediments as indicators of anthropogenic impacts in estuaries of south-southeast Brazil

Abstract

The coastal region of Brazil is historically impacted by anthropogenic activities, which release contaminants such as metals. In the estuaries of Paranaguá, Cananéia, and Santos in southern Brazil, these activities are present at differing levels. In the present study, concentrations of aluminum, arsenic, cadmium, lead, copper, chromium, iron, nickel, zinc and mercury were investigated, and geochemical parameters in sediments. Bulk carbon and nitrogen isotopic analyses were performed by EA-IRMS, and metal analyses were performed by ICP-OES-VGA. The As, Cr, Ni, Zn and Hg had higher concentrations in Santos estuary sediments. The effects range-median quotient indicating the potential for adverse effects to biota was found in this estuary, coinciding with the site with the greatest intensity of anthropogenic activities and higher percentages of mud. The levels of metals in the Paranaguá and Cananéia estuaries were similar, demonstrating that even with different degrees of anthropogenic pressures, the connection between these estuaries and the establishment of protected areas avoids contamination of these coastal regions that are World Heritage site and a biosphere reserve. Despite the decrease in the levels of metals in all the estuaries studied over time, the present study serves as a warning of the need for monitoring and coastal management actions. Mainly for Hg, which is available in sediments and above the sediment quality guidelines, to maintain the environmental quality of these important coastal regions of South America.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abessa, D. M. S., Sousa, E. C. P. M., & Tommasi, L. R. (2006). Utilização de testes de toxicidade na avaliação da qualidade de sedimentos marinhos. Revista De Geologia, 19, 253–261.

    Google Scholar 

  2. Aguiar, V. M. C., Abuchacra, P. F. F., Baptista Neto, J. A., & Oliveira, A. S. (2018). Environmental assessment concerning trace metals and ecological risks at Guanabara Bay, RJ, Brazil. Environmental Monitoring and Assessment, 190, 448. https://doi.org/10.1007/s10661-018-6833-x

    Article  Google Scholar 

  3. Amorim, E. P., Fávaro, D. I. T., Berbel, G. B. B., & Braga, E. S. (2008). Assessment of metal and trace element concentrations in the Cananéia estuary, Brazil, by neutron activation and atomic absorption techniques. Journal of Radioanalytical and Nuclear Chemistry, 278(2), 485–489. https://doi.org/10.1007/s10967-008-0909-y

    Article  Google Scholar 

  4. Angeli, J. L. F., Kim, B. S. M., Paladino, I. M., Nagai, R. H., Martins, C. C., Mahiques, M. M., & Figueira, R. C. L. (2020a). Statistical assessment of background levels for metal contamination from a subtropical estuarine system in the SW Atlantic (Paranaguá Estuarine System, Brazil). Journal of Sedimentary Environments, 5, 137–150. https://doi.org/10.1007/s43217-020-00008-5

    Article  Google Scholar 

  5. Angeli, J. L. F., Trevizani, T. H., Nagai, R. H., Martins, C. C., Figueira, R. C. L., & de Mahiques, M. M. (2020b). Geochemical mapping in a subtropical estuarine system influenced by large grain-shipping terminals: Insights using metal/metal ratios and multivariate analysis. Environmental Earth Sciences, 79, 443. https://doi.org/10.1007/s12665-020-09211-z

    Article  Google Scholar 

  6. Arienzo, M., Ferrara, L., Maria Toscanesi, M., Giarra, A., Donadio, C., & Trifuoggi, M. (2020). Sediment contamination by heavy metals and ecological risk assessment: The case of Gulf of Pozzuoli, Naples, Italy. Marine Pollution Bulletin, 155, 111149. https://doi.org/10.1016/j.marpolbul.2020.111149

    Article  Google Scholar 

  7. Baird, C. (2002). Química Ambiental (2nd ed.). Bookman.

    Google Scholar 

  8. Barcellos, R. L., Camargo, P. B., Galvão, A., Weber, R. R. (2009). Sedimentary organic matter in cores of the Cananéia–Iguape lagoonal–estuarine System, São Paulo State, Brazil. Journal of Coastal Research Special Issue, 56(II), 11335–1339. http://www.jstor.org/stable/25738006.

  9. Besnard, W. (1950). Considerações gerais em torno da região lagunar de Cananéia e Iguape I. Boletim Do Instituto Paulista De Oceanografia, 1(1), 9–26. https://doi.org/10.1590/S0100-42391950000200001

    Article  Google Scholar 

  10. Burton, G. A., Jr. (1992). Assessing contaminated aquatic sediments. Environmental Science and Technology, 26, 1862–1875. https://doi.org/10.1021/es00034a613

    Article  Google Scholar 

  11. Buruaem, L. M., Hortellani, M. A., Sarkis, J. E., Costa-Lotufo, L. V., & Abessa, D. M. S. (2012). Contamination of port zone sediments by metals from large marine ecosystems of Brazil. Marine Pollution Bulletin, 64, 479–488. https://doi.org/10.1016/j.marpolbul.2012.01.017

    Article  Google Scholar 

  12. Calado, B. O., & Tassinari, C. C. G. (2020). Geochemistry of the upper estuarine sediments of the Santos estuary, São Paulo Brazil: Provenance and anthropogenic pollution. Journal of the Geological Survey of Brazil, 3(3), 189–209. https://doi.org/10.29396/jgsb.2020

    Article  Google Scholar 

  13. Campos, B. G., Cruz, A. C. F., Buruaem, L. M., Rodrigues, A. P. C., Machado, W. T. V., & Abessa, D. M. S. (2016). Using a tiered approach based on ecotoxicological techniques to assess the ecological risks of contamination in a subtropical estuarine protected area. Science of the Total Environment, 544, 564–573. https://doi.org/10.1016/j.scitotenv.2015.11.124

    Article  Google Scholar 

  14. CCME-Canadian Council of Ministers of the Environment. (2001). Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Canadian Environmental Quality Guidelines, 1999, update 2001. https://www.elaw.org/system/files/sediment_summary_table.pdf. Accessed 11 May 2018.

  15. Cesar, A., Choueri, R. B., Riba, I., Morales-Caselles, C., Pereira, C. D. S., Santos, A. R., Abessa, D. M. S., & DelValls, T. A. (2007). Comparative sediment quality assessment in different litoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and São Vicente estuarine system). Environment International, 33, 429–435. https://doi.org/10.1016/j.envint.2006.11.007

    Article  Google Scholar 

  16. CETESB-Companhia de Tecnologia e Saneamento ambiental do Estado de São Paulo. (2001). Sistema Estuarino de Santos e São Vicente. Relatório técnico.

  17. CETESB-Companhia de Tecnologia e Saneamento ambiental do Estado de São Paulo. (2008). Qualidade das águas litorâneas no estado de São Paulo: Relatório técnico-balneabilidade das praias.

  18. Chakraborty, P., Sharma, B., Babu, P. V. R., Yao, K. M., & Jaychandran, S. (2014). Impact of total organic carbon (in sediments) and dissolved organic carbon (in overlying water column) on Hg sequestration by coastal sediments from the central east coast of India. Marine Pollution Bulletin, 79, 342–347. https://doi.org/10.1016/j.marpolbul.2013.11.028

    Article  Google Scholar 

  19. Chapman, P. M., & Wang, F. (2001). Assessing sediment contamination in estuaries. Environmental Toxicology and Chemistry, 20, 3–22. https://doi.org/10.1002/etc.5620200102

    Article  Google Scholar 

  20. Choueri, R. B., Cesar, A., Torres, R. J., Abessa, D. M. S., Morais, R. D., Pereira, C. D. S., Nascimento, M. R. L., Mozeto, A. A., Riba, I., & DelValls, T. A. (2009). Integrated sediment quality assessment in Paranaguá Estuarine System, Southern Brazil. Ecotoxicology and Environmental Safety, 72, 1824–1831. https://doi.org/10.1016/j.ecoenv.2008.12.005

    Article  Google Scholar 

  21. Christophoridis, C., Bourliva, A., Evgenakis, E., Papadopoulou, C., & Fytianos, K. (2019). Effects of anthropogenic activities on the levels of heavy metals in marine surface sediments of the Thessaloniki Bay, Northern Greece: Spatial distribution, sources and contamination assessment. Microchemical Journal, 149, 104001. https://doi.org/10.1016/j.microc.2019.104001

    Article  Google Scholar 

  22. Clark, R. B. (2001). Marine pollution. Oxford University Press.

    Google Scholar 

  23. CONAMA-Conselho Nacional do Meio Ambiente. (2012). Resolução CONAMA No 454, de 1º de Novembro de 2012. https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2012/res_conama_454_2012_materialserdragadoemaguasjurisdicionaisbrasileiras.pdf. Accessed 23 Jan 2018.

  24. Day, J. W., Jr., Hall, C. A. S., Kemp, W. M., & Yáñez-Arancibia, A. (1987). Estuarine ecology. Wiley.

    Google Scholar 

  25. El Houssainy, A., Abi-Ghanem, C., Dang, D. H., Mahfouz, C., Omanović, D., Khalaf, G., Mounier, S., & Garnier, C. (2020). Distribution and diagenesis of trace metals in marine sediments of a coastal Mediterranean area: St Georges Bay (Lebanon). Marine Pollution Bulletin, 155, 111066. https://doi.org/10.1016/j.marpolbul.2020.111066

    Article  Google Scholar 

  26. Förstner, U. (2004). Traceability of sediment analysis. TrAC Trends in Analytical Chemistry, 23(3), 217–236. https://doi.org/10.1016/S0165-9936(04)00312-7

    Article  Google Scholar 

  27. Förstner, U., & Salomons, W. (1980). Trace metal analysis on polluted sediments. Part I: Assessment of sources and intensities. Environmental Technology Letters, 1, 494–505. https://doi.org/10.1080/09593338009384006

    Article  Google Scholar 

  28. Gao, B., Han, L., Hao, H., & Zhou, H. (2016). Pollution characteristics of mercury (Hg) in surface sediments of major basins, China. Ecological Indicators, 67, 577–585. https://doi.org/10.1016/j.ecolind.2016.03.031

    Article  Google Scholar 

  29. Guimarães, V., & Sígolo, J. B. (2008). Associação de resíduos da metalurgia com sedimentos em suspensão-Rio Ribeira de Iguape. Geologia USP Série Científica, 8(2), 1–10. https://doi.org/10.5327/Z1519-874X2008000200001

    Article  Google Scholar 

  30. Hammer, Ø., Harper, D. A. T., Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  31. Harari, J., Mesquita, A. R., Marone, E., França, C. A. S., Camargo, R., Pereira, J. E. R., Adão, C. J. G. P., Sá Junior, I. L. (1990). Technical report of the project “flow measurements in the Bay of Santos”, FUNDESPA.

  32. Hobson, K. A., & Welch, H. E. (1992). Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series, 84, 9–18. https://doi.org/10.3354/meps084009

    Article  Google Scholar 

  33. Hortellani, M. A., Abessa, D. M. S., & Sousa, E. C. P. M. (2008). Avaliação da contaminação por elementos metálicos dos sedimentos do Estuário Santos-São Vicente. Quimica Nova, 31, 10–19. https://doi.org/10.1590/S0100-40422008000100003

    Article  Google Scholar 

  34. IBGE (Instituto Brasileiro de Geografia e Estatística). (2010). Conheça Cidades e Estados do Brasil. https://cidades.ibge.gov.br/. Accessed 18 Jan 2017

  35. IBGE (Instituto Brasileiro de Geografia e Estatística). (2016). Censo Demográfico-2016. https://ww2.ibge.gov.br. Accessed 28 Sept 2017.

  36. Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48, 624–649. https://doi.org/10.1016/j.marpolbul.2003.12.004

    Article  Google Scholar 

  37. Karadede-Akin, H., & Unlu, E. (2007). Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environmental Monitoring and Assessment, 131, 323–337. https://doi.org/10.1007/s10661-006-9478-0

    Article  Google Scholar 

  38. Kehrig, H. A., Costa, M., Moreira, I., & Malm, O. (2006). Total and methyl mercury in different species of mollusks from two estuaries in Rio de Janeiro State. Journal of the Brazilian Chemical Society, 17, 1409–1418. https://doi.org/10.1590/S0103-50532006000700031

    Article  Google Scholar 

  39. Kim, B. S. M., Salaroli, A. B., Ferreira, P. A. L., Sartoretto, J. R., Mahiques, M. M., & Figueira, R. C. L. (2016). Spatial distribution and enrichment assessment of heavy metals in surface sediments from Baixada Santista, Southeastern Brazil. Marine Pollution Bulletin, 103, 333–338. https://doi.org/10.1016/j.marpolbul.2015.12.041

    Article  Google Scholar 

  40. Krelling, A. P., Souza, M. M., Williams, A. T., & Turra, A. (2017). Transboundary movement of marine litter in an estuarine gradient: Evaluating sources and sinks using hydrodynamic modelling and ground truthing estimates. Marine Pollution Bulletin, 119, 48–63. https://doi.org/10.1016/j.marpolbul.2017.03.034

    Article  Google Scholar 

  41. Lamb, A. L., Wilson, G. P., & Leng, M. J. (2006). A review of coastal palaeoclimate and relative sea-level reconstructions using d13C and C/N ratios in organic material. Earth-Science Reviews, 75, 29–57. https://doi.org/10.1016/j.earscirev.2005.10.003

    Article  Google Scholar 

  42. Lamour, M. R., Angulo, R. J., & Soares, C. R. (2007). Bathymetrical Evolution of critical shoaling sectors on Galheta Channel, navigable access to Paranaguá Bay, Brazil. Journal of Coastal Research, 23(1), 49–58. https://doi.org/10.2112/03-0063.1

    Article  Google Scholar 

  43. Lombardi, A. T., Hidalgo, T. M. R., & Vieira, A. A. H. (2005). Copper complexing properties of dissolved organic matter exuded by freshwater microalgae Scenedesmus acuminatus (Chlorophyceae). Chemosphere, 60, 453–459. https://doi.org/10.1016/j.chemosphere.2004.12.071

    Article  Google Scholar 

  44. Long, E. R., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19, 81–97. https://doi.org/10.1007/BF02472006

    Article  Google Scholar 

  45. Luiz-Silva, W., Machado, W., & Matos, R. H. R. (2008). Multi-elemental contamination and historical record in sediments from the Santos-Cubatão Estuarine System, Brazil. Journal of the Brazilian Chemical Society, 19(18), 1490–1500. https://doi.org/10.1590/S0103-50532008000800008

    Article  Google Scholar 

  46. Mahiques, M. M., Figueira, R. C. L., Salaroli, A. B., Alves, D. P. V., & Gonçalves, C. (2013). 150 years of anthropogenic metal input in a Biosphere Reserve: The case study of the Cananéia–iguape coastal system, Southeastern Brazil. Environmental Earth Sciences, 68, 1073–1087. https://doi.org/10.1007/s12665-012-1809-6

    Article  Google Scholar 

  47. Mahiques, M. M., Hanebuth, T. J. J., Martins, C. C., Montes, I. M., Alcantara-Carrio, J., Figueira, R. C. L., & Bicego, M. C. (2016). Mud depocentres on the continental shelf: A neglected sink for anthropogenic contaminants from the coastal zone. Environmental Earth Science, 75, 1–12. https://doi.org/10.1007/s12665-015-4782-z

    Article  Google Scholar 

  48. Marone, E., Machado, E. C., Lopes, R. M., & Da Silva, E. T. (2005). Land-ocean fluxes in the Paranaguá Bay estuarine system, southern Brazil. Brazilian Journal of Oceanography, 53, 169–181. https://doi.org/10.1590/S1679-87592005000200007

    Article  Google Scholar 

  49. MMA-Ministério do Meio Ambiente. (2017). Sítios Ramsar. http://www.mma.gov.br/areas-protegidas/instrumentos-de-gestao/s%C3%ADtios. Accessed 10 Jan 2019.

  50. Muniz, P., Venturini, N., Martins, C. C., Munshi, A. B., García-Rodríguez, F., Brugnoli, E., Dauner, A. L. L., Bícego, M. C., & García-Alonso, J. (2015). Integrated assessment of contaminants and monitoring of an urbanized temperate harbor (Montevideo, Uruguay): A 12-year comparison. Brazilian Journal of Oceanography, 63(3), 311–330. https://doi.org/10.1590/S1679-87592015088506303

    Article  Google Scholar 

  51. Orani, A. M., Vassileva, E., Azemard, S., & Alonso-Hernandez, C. (2020). Trace elements contamination assessment in marine sediments from different regions of the Caribbean Sea. Journal of Hazardous Materials, 399, 122934. https://doi.org/10.1016/j.jhazmat.2020.122934

    Article  Google Scholar 

  52. Possatto, F. E., Spach, H. L., Cattani, A. P., Lamour, M. R., Santos, L. O., Cordeiro, N. M. A., & Broadhurst, M. K. (2015). Marine debris in a world heritage listed Brazilian estuary. Marine Pollution Bulletin, 91, 548–553. https://doi.org/10.1016/j.marpolbul.2014.09.032

    Article  Google Scholar 

  53. Rullkötter, J. (2006). Organic matter: The driving force for early diagenesis. In D. D. Schulz & M. Zabel (Eds.), Marine Geochemistry (2nd ed., pp. 125–146). Springer.

    Chapter  Google Scholar 

  54. Sá, F., Machado, E. C., Angulo, R. J., Veiga, F. A., & Brandini, N. (2006). Arsenic and heavy metals in sediments near Paranaguá Port, Southern Brazil. Journal of Coastal Research, 39, 1066–1068.

    Google Scholar 

  55. Sá, F., Sanders, C. J., Patchineelam, S. R., Machado, E. C., & Lombardi, A. T. (2015). Arsenic fractionation in estuarine sediments: Does coastal eutrophication influence as behavior? Marine Pollution Bulletin, 96, 496–501. https://doi.org/10.1016/j.marpolbul.2015.04.037

    Article  Google Scholar 

  56. Schneider, R. R., Schulz, H. D., & Hensen, C. (2005). Marine carbonates: Their formation and destruction. In H. D. Schulz & M. Zobel (Eds.), Marine geochemistry (2nd ed., pp. 311–338). Springer.

    Google Scholar 

  57. Tramonte, K. M., Figueria, R. C. L., de Ferreira, P. A. L., Ribeiro, A. P., Batista, M. F., & de Mahiques, M. M. (2016). Environmental availability of potentially toxic elements in estuarine sediments of the Cananéia–Iguape coastal system, Southeastern Brazil. Marine Pollution Bulletin, 103, 260–269. https://doi.org/10.1016/j.marpolbul.2015.12.011

    Article  Google Scholar 

  58. Trevizani, T. H., Domit, C., Broadhurst, M. K., Santos, M. C. O., & Figueira, R. C. L. (2019a). Trophic dynamics in two South American estuaries encompassing industrial development and a biodiversity hotspot. Aquatic Conservation: Marine and Freshwater Ecosystems, 29, 2045–2056. https://doi.org/10.1002/aqc.3222

    Article  Google Scholar 

  59. Trevizani, T. H., Domit, C., Vedolin, M. C., Angeli, J. L. F., & Figueira, R. C. L. (2019b). Assessment of metal contamination in fish from estuaries of southern and southeastern Brazil. Environmental Monitoring and Assessment, 190, 308. https://doi.org/10.1007/s10661-019-7477-1

    Article  Google Scholar 

  60. UNESCO-United Nations Educational, Scientific and Cultural Organization. (1999). Atlantic Forest South-East Reserves. World Heritage List. http://whc.unesco.org/en/list/893. Accessed 10 Dec 2019.

  61. USEPA-Unitec States Environmental Protection Agency. (1994). Method 7471A Mercury in solid or semisolid waste (manual cold-vapor technique). Revision 1.

  62. USEPA-Unitec States Environmental Protection Agency. (1996). Method 3050b Acid digestion of sediments, sludges and soils. Revision 2.

  63. Waeles, M., Riso, R. D., Maguer, J. F., & Le Corre, P. (2004). Distribution and chemical speciation of dissolved cadmium and copper in the Loire Estuary and North Biscay continental shelf, France. Estuarine, Coastal and Shelf Science, 59, 49–57. https://doi.org/10.1016/j.ecss.2003.07.009

    Article  Google Scholar 

  64. Zhou, G., Sun, B., Zeng, D., Wei, H., Liu, Z., & Zhang, B. (2014). Vertical distribution of trace elements in the sediment cores from major rivers in east China and its implication on geochemical background and anthropogenic effects. Journal of Geochemical Exploration, 139, 53–67. https://doi.org/10.1016/j.gexplo.2013.03.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq; Grant number 162446/2014-4].

Funding

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tailisi Hoppe Trevizani.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Maria Virginia Alves Martins

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trevizani, T.H., Domit, C., Tramonte, K.M. et al. Metals in sediments as indicators of anthropogenic impacts in estuaries of south-southeast Brazil. J. Sediment. Environ. 6, 417–430 (2021). https://doi.org/10.1007/s43217-021-00069-0

Download citation

Keywords

  • Heavy metals
  • Carbon stable isotopes
  • Paranaguá
  • Cananéia–Iguape
  • Santos–São vicente
  • Estuarine/lagoonal systems