Skip to main content

Major and trace element geochemistry of the shales of Sekuliye Formation, Yola Sub-Basin, Northern Benue Trough, Nigeria: implications for provenance, weathering intensity, and tectonic setting

Abstract

The shales of Sekuliye Formation were investigated to interpret their provenance history, weathering, and tectonic setting based on major and trace element geochemistry. The major and trace element geochemistry revealed derivation of the shales from felsic igneous rocks with little influence from intermediate igneous rocks and quartzose sedimentary rocks. Weathering proxies such as plagioclase index of alteration (PIA), chemical index of alteration (CIA), index of chemical variability (ICV) and Rb/Sr ratios show that the source rock undergoes high degree of chemical weathering activities. Also, the plot CIA vs. ICV shows that all the studied shales were plotted below Post Archean Australian Shale. The ICV value of 0.85 also indicates high intensity of weathering activities in the provenance area. The paleoclimatic indicators (C values and Sr/Cu) and some trace elements ratios (Ni/Co and Cu/Zn) displayed deposition under humid conditions and oxic depositional environment, respectively. The Sr/Ba ratios revealed high salinity during the deposition of the studied shale, reflecting a marine depositional environment. Through geochemical studies, these sediments were classified as shales that are texturally immature and compositionally matured. The geochemical data plotted on tectonic setting discriminant function diagrams suggested a continental rift of passive margin settings. Accordingly, the inferred tectonic settings are comparable to the accepted model on the origin and evolution of the Benue Trough.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abubakar, M. B. (2006). Biostratigraphy, palaeoenvironments and organic geochemistry of the cretaceous sequences of the Gongola Basin, Upper Benue Trough (Ph.D. unpublished thesis). Abubakar Tafawa Balewa University Bauchi, Nigeria, p. 315.

  2. Abubakar, M. B. (2014). Petroleum potentials of the Nigerian Benue Trough and Anambra Basin: A regional synthesis. Natural Resources, 5, 25–58. https://doi.org/10.4236/nr.2014.51005

    Article  Google Scholar 

  3. Abubakar, U., Usman, M. B., Bello, A. M., Garba, T. A., & Hassan, S. (2019). Geochemical and palaeocurrent analysis of the Tertiary Kerri-Kerri Formation in the Gongola Sub-Basin of the Northern Benue Trough Northeastern Nigeria: Implications for provenance, tectonic setting, and palaeoweathering. SN Applied Sciences. https://doi.org/10.1007/s42452-019-1196-7

    Article  Google Scholar 

  4. Akkoca, B. D., Eriş, K. K., Çağatay, M. N., & Biltekin, D. (2019). The mineralogical and geochemical composition of Holocene sediments from Lake Hazar, Elazığ, Eastern Turkey: Implications for weathering, paleoclimate, redox conditions, provenance, and tectonic setting. Turkish Journal of Earth Sciences, 28, 760–785. https://doi.org/10.3906/yer-1812-8

    Article  Google Scholar 

  5. Allix, P. (1983). Environments Mesozoiques de la partie nordorientale du fosse de la Benoue (Nigeria), Stratigraphic, sedimentologie, evolution geodynamique. Trav Lab Sci Terre St. Jerome Marseille Fr, 21, 1–200.

    Google Scholar 

  6. Armstrong-Altrin, J. S. (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review, 57, 1446–1461. https://doi.org/10.1080/00206814.2014.936055

    Article  Google Scholar 

  7. Armstrong-Altrin, J. S., Lee, Y. I., Kasper-Zubillaga, J. J., & Trejo-Ramírez, E. (2016). Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beaches, southern Mexico: Implications for provenance and tectonic setting. Geological Journal. https://doi.org/10.1002/gj2792

    Article  Google Scholar 

  8. Armstrong-Altrin, J. S., Nagarajan, R., Madhavaraju, J., Rosalez-Hoz, L., & Lee, Y. I. (2013). Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: Implications of source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience, 345, 185–202. https://doi.org/10.1016/j.crte.2013.03.004

    Article  Google Scholar 

  9. Benkhelil, J. (1989). The origin and evolution of the Cretaceous Benue Trough (Nigeria). Journal of African Earth Sciences, 8, 251–282. https://doi.org/10.1016/S0899-5362(89)80028-4

    Article  Google Scholar 

  10. Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  11. Bhatia, M. R. (1985). Composition and classification of flysch mudrocks of Eastern Australia: Implication in provenance and tectonic setting interpretation. Sedimentary Geology, 41, 249–268. https://doi.org/10.1016/0037-0738(84)90065-4

    Article  Google Scholar 

  12. Bhatia, M. R., & Crook, K. (1986). Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  13. Cao, J., Wu, M., Chan, Y., Hu, K., Bian, L. Z., Wang, L. G., & Zhang, Y. (2012). Trace and rare earth elements geochemistry of Jurassic mudstones in the northern Qaidam basin, northwest China. Chemie Der Erde, 72, 245–252. https://doi.org/10.1016/j.chemer.2011.12.002

    Article  Google Scholar 

  14. Carter, J. D., Barber, W. D. F., & Tait, E. A. (1963). The geology of parts of Adamawa, Bauchi and Bornu provinces in north eastern Nigeria. Geological Survey of Nigeria Bulletin, 30.

  15. Cox, R., Lowe, D. R., & Cullers, R. (1995). A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sediment cover. Journal of Sedimentary Research, 1, 1–12. https://doi.org/10.1306/D4268009-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  16. Cullers, R. L. (1994). The controls on major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimicia Et Cosmochimicia Acta, 58, 4955–4972. https://doi.org/10.1016/0016-7037(94)90224-0

    Article  Google Scholar 

  17. Cullers, R. L., Basu, A., & Suttner, L. (1988). Geochemical signature of provenance in sand-size material in soils and river sediments near the Tobacco Root batholith, Montana, USA. Chemical Geology, 70, 335–348. https://doi.org/10.1016/0009-2541(88)90123-4

    Article  Google Scholar 

  18. Descourvieres, C., Douglas, G., Leyland, L., Hartog, N., & Prommer, H. (2011). Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The Cretaceous Leederville Formation, southwest Australia. Sedimentary Geology, 236, 62–76. https://doi.org/10.1016/j.sedgeo.2010.12.006

    Article  Google Scholar 

  19. Dypvik, H. (1984). Geochemical compositions and depositional conditions of Upper Jurassic and Lower Cretaceous Yorkshire clays, England. Geological Magazine, 121, 489–504. https://doi.org/10.1017/S0016756800030028

    Article  Google Scholar 

  20. Etemad-Saeed, N., Hosseini-Barzi, M., Adabi, M. H., Sadeghi, A., & Houshmandzadeh, A. (2015). Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. Journal of African Earth Sciences, 111, 54–75. https://doi.org/10.1016/j.jafrearsci.2015.07.003

    Article  Google Scholar 

  21. Gabriel, N., Armel Zacharie, E. B., John, E. T., David, D. Z., Hadjidjatou, B. D., & Lionel, T. N. (2019). Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck Formations, Douala sub-basin, SW Cameroon: Implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. Journal of African Earth Sciences, 152, 215–236. https://doi.org/10.1016/j.jafrearsci.2019.02.021

    Article  Google Scholar 

  22. Gale, A. S. (1996). Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: S. P. Hesselbo, D. N. Parkinson (Eds.), Sequence stratigraphy in British geology. Geological Society London, Special Publication (Vol. 103, pp. 177–195). https://doi.org/10.1144/GSL.SP.1996.103.01.10

  23. Grant, N.K. (1971). South Atlantic, Benue Trough and Gulf of Guinea Cretaceous triple junction. Bull Geological Society of America Bulletin, 82, 2295–2298

  24. Guiraud, R., & Maurin, J.E. (1992). Early Cretaceous rifts of Western and Central Africa: An overview. In: P. A. Ziegler (Eds.), Geodynamics of rifting, volume II. Case history studies on rifts: North and South America and Africa, Tectonophysics (Vol. 213, pp. 153–168). https://doi.org/10.1016/0040-1951(92)90256-6

  25. Hayashi, K. I., Fujisawa, H., Holland, H. D., & Ohmoto, H. (1997). Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica Et Cosmochimica Acta, 61, 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7

    Article  Google Scholar 

  26. Hernández-Hinojosa, V., Montiel-García, P. C., Armstrong-Altrin, J. S., Nagarajan, R., & Kasper-Zubillaga, J. J. (2018). Textural and geochemical characteristics of beach sands along the western Gulf of Mexico, Mexico. Carpathian Journal of Earth and Environmental Sciences, 13, 161–174. https://doi.org/10.26471/cjees/2018/013/015

    Article  Google Scholar 

  27. Herron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Petrology, 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  28. Jones, B., & Manning, D. A. C. (1994). Comparison of geological indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111, 111–129. https://doi.org/10.1016/0009-2541(94)90085-X

    Article  Google Scholar 

  29. King, L. C. (1950). Outline and distribution of Gondwanaland. Geological Magazine, 87, 353–359.

    Article  Google Scholar 

  30. Li, Q., Wu, S., Xia, D., You, X., Zhang, H., & Lu, H. (2020). Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Marine and Petroleum Geology, 111, 852–867. https://doi.org/10.1016/j.marpetgeo.2019.09.003

    Article  Google Scholar 

  31. Liang, C., Wu, J., Jiang, Z., Cao, Y., & Song, G. (2018). Sedimentary environmental controls on petrology and organic matter accumulation in the upper fourth member of the Shahejie Formation (Paleogene, Dongying depression, Bohai Bay Basin, China). International Journal of Coal Geology, 186, 1–3. https://doi.org/10.1016/j.coal.2017.11.016

    Article  Google Scholar 

  32. Liu, G., & Zhou, D. (2007). Application of microelements analysis in identifying sedimentary environment-taking Qianjiang Formation in the Jiang Han Basin as an example. Petroleum Geology & Experiment, 29, 307–311. (in Chinese with English abstract).

    Google Scholar 

  33. Long, X., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K., & Jiang, Y. (2012). Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: evidence for a northward derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research, 22, 554–566. https://doi.org/10.1016/j.gr.2011.04.009

    Article  Google Scholar 

  34. Mamman, Y. D. (2007). Facies sequences, biostratigraphy, clay minerolgy and paleoenvironment of Late Cenomanian Turonian sediments in The Yola Arm, Upper Benue Trough, North Eastern Nigeria. Unpublished Ph.D Thesis, ATBU, Bauchi (p. 102).

  35. McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics. In: Geological Society of America Special Paper (Vol. 284, pp. 21–40). https://doi.org/10.1130/SPE284-p21

  36. Moradi, A. V., Sarı, A., & Akkaya, P. (2016). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum basin, central Turkey: Implications for paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sedimentary Geology, 341, 289–303. https://doi.org/10.1016/j.sedgeo.2016.05.002

    Article  Google Scholar 

  37. Nagarajan, R., Armstrong-Altrin, J. S., Kessler, F. L., & Jong, J. (2017). Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of clastic sediments from the Neogene Lambir and Sibuti Formations, northwest Borneo. In: Mazumder, R. (Ed.) Sediment provenance influences on compositional change from source to sink. Elsevier Inc., New York (pp. 123–153). https://doi.org/10.1016/B978-0-12-803386-9.00007-1

  38. Nagarajan, R., Madhavaraju, J., Armstrong-Altrin, J. S., & Nagendra, R. (2007). Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Journal of Geosciences, 15, 9–25. https://doi.org/10.1007/s12303-011-0005-0

    Article  Google Scholar 

  39. Nwajide, C. S. (2013). Geology of Nigeria’s sedimentary basins. CSS Bookshops Ltd.

    Google Scholar 

  40. Obaje, N. G., Ulu, O. K., & Petters, S. W. (1999). Biostratigraphic and geochemical controls of hydrocarbon prospects in the Benue Trough and Anambra Basin, Nigeria. NAPE Bulletin, 14, 18–54.

    Google Scholar 

  41. Olade, M.A. (1975). Evolution of Nigeria's Benue trough: a tectonic model. Geological Magazine, 112, 575–583.

  42. Opeloye, S. A. (2002). Some Aspect of Facies Architecture, Geochemistry and Paleoenvironments of Senonian Formations in the Yola Arm, Upper Benue Trough (Nigeria). Unpublished Ph.D. Thesis, ATBU, Bauchi (p. 155).

  43. Opeloye, S. A., & Obaje, N. G. (2005). Ostracods from the Yola arm, Upper Benue Trough, Nigeria. Global Journal of Geological Sciences, 2, 179–185.

    Google Scholar 

  44. Qiu, X. W., Liu, C. Y., Wang, F. F., Deng, Y., & Mao, G. Z. (2015). Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, Central China. Geological Journal, 50, 399–413. https://doi.org/10.1002/gj.2542

    Article  Google Scholar 

  45. Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650. https://doi.org/10.1086/629071

    Article  Google Scholar 

  46. Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology, 67, 119–139. https://doi.org/10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  47. Sarki Yandoka, B. M. (2015). Sedimentary and organic facies characterisation of the Cretaceous sequences, Yola Sub-basin, Northern Benue Trough, NE Nigeria. Ph.D. thesis, University of Malaya, Kuala Lumpur.

  48. Sarki Yandoka, B. M., Wan Hasiah, A., Abubakar, M. B., Adegoke, A. K., Maigari, A. S., Haruna, A. I., & Yaro, U. Y. (2017). Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology. Journal of African Earth Sciences, 129, 153–164. https://doi.org/10.1016/j.jafrearsci.2016.12.009

    Article  Google Scholar 

  49. Sarki Yandoka, B. M., Wan Hasiah, A., Abubakar, M. B., Hail Hakimi, M., & Adegoke, A. K. (2015). Geochemistry of the Cretaceous coals from Lamja Formation, Yola Subbasin, Northern Benue Trough, NE Nigeria: Implications for paleoenvironment, paleoclimate and tectonic setting. Journal of African Earth Sciences, 104, 56–70. https://doi.org/10.1016/j.jafrearsci.2015.01.002

    Article  Google Scholar 

  50. Sarki Yandoka, B. M., Wan Hasiah, A., Abubakar, M. B., Hail Hakimi, M., Jauro, A., & Adegoke, A. K. (2016). Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria. Journal of African Earth Sciences, 117, 235–251. https://doi.org/10.1016/j.jafrearsci.2016.01.026

    Article  Google Scholar 

  51. Schneider, S., Hornung, J., & Hinderer, M. (2017). Evolution of the northern Albertine Rift reflected in the provenance of synrift sediments (Nkondo-Kaiso area, Uganda). Journal of African Earth Sciences, 131, 183–197. https://doi.org/10.1016/j.jafrearsci.2017.04.012

    Article  Google Scholar 

  52. Stoll, H. M., & Schrag, D. P. (2000). High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet. Geological Society of America Bulletin, 112, 309–319. https://doi.org/10.1130/0016-7606(2000)112%3c308:HSIRFT%3e2.0.CO;2

    Article  Google Scholar 

  53. Stoneley, R. (1966). The Niger Delta region in the light of the theory of continental drift. Geological Magazine, 103, 385–397. https://doi.org/10.1017/S0016756800053978

    Article  Google Scholar 

  54. Tawfik, H. A., Ghandour, I. M., Maejima, W., & Abdel-Hameed, A. T. (2011). Petrography and geochemistry of the Lower Paleozoic Araba Formation, Northern Eastern Desert, Egypt: Implications for provenance, tectonic setting and weathering signature. Journal of Geoscience, 54, 1–16.

    Google Scholar 

  55. Tawfik, H. A., Ghandour, I. M., Maejima, W., Armstrong-Altrin, J. S., & Abdel-Hameed, A. M. T. (2017). Petrography and geo chemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: Implications for provenance, tectonic setting and source weathering. Geological Magazine, 154, 1–23. https://doi.org/10.1017/S0016756815000771

    Article  Google Scholar 

  56. Tchouatcha, M. S., Tamfuh, P. A., Sobdjou, C. K., Mbesse, C. O., & Ngnotue, T. (2021). Provenance, palaeoweathering and depositional environment of the cretaceous deposits from the Babouri-Figuil and Mayo Oulo-Lere basins (North-Cameroon) during the Southern Atlantic opening: Geochemical constraints. Journal of African Earth Sciences, 174, 104052. https://doi.org/10.1016/j.jafrearsci.2020.104052

    Article  Google Scholar 

  57. Usman, M. B., Brasier, A. T., Jolley, D. W., Abubakar, U., & Mukkafa, S. (2021). Did the Benue Trough connect the Gulf of Guinea with the Tethys Ocean in the Cenomanian? New evidence from the palynostratigraphy of the Yola Sub-basin. Cretaceous Research, 119, 104683. https://doi.org/10.1016/j.cretres.2020.104683

    Article  Google Scholar 

  58. Verma, S. P., & Armstrong-Altrin, J. S. (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology, 355, 117–133. https://doi.org/10.1016/j.sedgeo.2015.11.011

    Article  Google Scholar 

  59. Verma, S. P., & Armstrong-Altrin, J. S. (2016). Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology, 332, 1–12. https://doi.org/10.1016/j.sedgeo.2015.11.011

    Article  Google Scholar 

  60. Wei, W., & Algeo, T. J. (2020). Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochimica Et Cosmochimica Acta, 287, 341–366. https://doi.org/10.1016/j.gca.2019.06.034

    Article  Google Scholar 

  61. Wicander, R., & Monroe, J. S. (2016). Historical geology: Evolution of earth and life through time (8th ed.). . Cengage Learning.

    Google Scholar 

  62. Wiese, F., & Voigt, S. B. (2002). Late Turonian (Cretaceous) climate cooling in Europe: Faunal response and possible causes. Geobios, 35, 65–77. https://doi.org/10.1016/S0016-6995(02)00010-4

    Article  Google Scholar 

  63. Zaborski, P. M., Ugodulunwa, F., Idornigie, A., Nnabo, P., & Ibe, K. (1997). Stratigraphy and structure of the Cretaceous Gongola Basin, northeast Nigeria. Bulletin De Centres Des Recherches Exploration Production Elf-Aquitaine, 21, 153–186.

    Google Scholar 

  64. Zhao, Z. Y., Zhao, J. H., Wang, H. J., Liao, J. D., & Liu, C. M. (2007). Distribution characteristics and applications of trace elements in Junggar basin. Nat. Gas Exp. Dev., 30, 30–33. (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Department of Geology, Gombe State University, Gombe, Nigerian for providing enabling environment to conduct this research. Our appreciation goes to the editor and the two anonymous reviewers whose contributions help immensely to the improvement of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Usman Abubakar.

Ethics declarations

Conflict of interest

All the authors affirm that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Maria Virginia Alves Martins

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abubakar, U., Usman, M.B., Aliyuda, K. et al. Major and trace element geochemistry of the shales of Sekuliye Formation, Yola Sub-Basin, Northern Benue Trough, Nigeria: implications for provenance, weathering intensity, and tectonic setting. J. Sediment. Environ. 6, 473–484 (2021). https://doi.org/10.1007/s43217-021-00067-2

Download citation

Keywords

  • Pearson correlation
  • Maturity
  • Felsic igneous rocks
  • Passive margin
  • Humid climate
  • Marine