Skip to main content
Log in

Depositional, diagenetic, and sequence stratigraphic constrains on reservoir characterization: a case study of middle Jurassic Samana Suk Formation, western Salt Range, Pakistan

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The present study integrates microfacies and diagenesis to construct a sequence stratigraphic framework and evaluate petroleum reservoir prospects of the middle Jurassic Samana Suk Formation, exposed in the western Salt Range, Pakistan. The rock unit is mainly composed of limestone, and marls with minor sandstone lithofacies. Based on the detailed petrographic, scanning electron microscopic, and energy-dispersive X-ray spectroscopic data, a total of four microfacies are identified, suggesting deposition of Samana Suk Formation in three different depositional environments including open marine, lagoon, and beach settings. Based on interpreted sea-level fluctuations from the microfacies data, a sequence stratigraphic framework is constructed. The Samana Suk Formation has witnessed one 2nd-order local cycle and 3rd-order sequences. The 3rd-order sequence holds three Highstand Systems Tracts (HSTs), two Transgressive Systems Tracts (TSTs), and a Lowstand Systems Tract (LST). The LST sandstone deposits show relatively higher microscopic porosity than the carbonates of HST and TST. The diagenetic modifications including compaction, shallow micritization, and heavy cementation have diminished the porosity of TST and HST limestone deposits. However, the effect of such diagenetic alterations is relatively less pronounced in LST deposits. The sea-level curve constructed from the local depositional pattern mismatch with the global sea-level curve probably because of the effect of local tectonics. The integrated porosity measurements based on outcrop, petrography, and scanning electron microscopy data revealed poor to moderate reservoir potential for the limestone and sandstone lithofacies of the studied rock unit, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelkarim, A. A., Abdullatif, O. M., Babalola, L. O., Makkawi, M. H., & Yassin, M. A. (2019). High-resolution lithofacies and porosity modeling of the mixed siliciclastic–carbonate deposits of the Burdigalian Dam Formation, Eastern Saudi Arabia. International Journal of Earth Sciences, 108(1), 155–172.

    Google Scholar 

  • Ahmed, S., Mertmann, D., & Manutsoglu, E. (1997). Jurassic shelf sedimentation and sequence stratigraphy of the Surghar Range, Pakistan. Journal of Nepal Geology Society, 15, 15–22.

    Google Scholar 

  • Ahmad, S., Wadood, B., Khan, S., Ahmed, S., Ali, F., & Saboor, A. (2020). Integrating the palynostratigraphy, petrography, X-ray diffraction and scanning electron microscopy data for evaluating hydrocarbon reservoir potential of Jurassic rocks in the Kala Chitta Range, Northwest Pakistan. Journal of Petroleum Exploration and Production Technology. https://doi.org/10.1007/s13202-020-00957-7.

    Article  Google Scholar 

  • Arakel, A. (1980). Genesis & diagenesis of Holocene evaporitic sediments in Hutt and Leeman lagoons, Western Australia. Journal of Sedimentary Research, 50(4), 1305–1326.

    Google Scholar 

  • Azerêdo, A. C., Inês, N., & Bizarro, P. (2020). Carbonate reservoir outcrop analogues with a glance at pore-scale (Middle Jurassic, Lusitanian Basin, Portugal). Marine and Petroleum Geology, 111, 815–851.

    Google Scholar 

  • Badiozamani, K. (1973). The dorag dolomitization model, application to the middle Ordovician of Wisconsin. Journal of Sedimentary Research, 43(4), 965–984.

    Google Scholar 

  • Baker D.M. (1987). Balanced Structural Cross-sections of the Central Salt Range and Potwar Plateau of Pakistan: Shortening and Overthrust Deformation. M.S.thesis, Oregon State University, Corvallis 

  • Bathurst, R. (1966). Boring algae, micrite envelopes and lithification of molluscan biosparites. Geological Journal, 5(1), 15–32.

    Google Scholar 

  • Bender, F. K, Raza, H. A. (1995). Geology of Pakistan. Berlin: Beträge zur regionalen Geologie der Erde. Gebrüder Borntraeger

  • Burbank, D. W., & Raynolds, R. G. (1988). Stratigraphic keys to the timing of thrusting in terrestrial foreland basins: Applications to the northwestern Himalaya. New perspectives in basin analysis (pp. 331–351). Berlin: Springer.

    Google Scholar 

  • Butler, R. W., Coward, M. P., Harwood, G. M., & Knipe, R. J. (1987). Salt control on thrust geometry, structural style and gravitational collapse along the Himalayan mountain front in the Salt Range of northern Pakistan. Dynamical geology of salt and related structures (pp. 339–418). Oxford: Elsevier.

    Google Scholar 

  • Calkins, J. A., & Matin, A. A. (1973). The geology and mineral resources of the Garhi Habibullah quadrangle and the Kakul area, Hazara District, Pakistan. US Geological Survey.

  • Chilingar, G. V., & Terry, R. (1954). Relationship between porosity and chemical composition of carbonate rocks. Petroleum Engineer, 26(10), B53–B54.

    Google Scholar 

  • Choquette, P. W., & Pray, L. C. (1970). Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bulletin, 54(2), 207–250.

    Google Scholar 

  • Conliffe, J., Azmy, K., & Greene, M. (2012). Dolomitization of the lower Ordovician Catoche formation: Implications for hydrocarbon exploration in western New foundland. Marine and Petroleum Geology, 30(1), 161–173.

    Google Scholar 

  • Cotter, G. D. P. (1933). The geology of the part of the Attock district west of longitude 72 45 E. Memoirs of the Geological Survey of India, 55(2), 63–161.

    Google Scholar 

  • Coward, M. P., Butler, R., Chambers, A., Graham, R., Izatt, C., Khan, M. A., et al. (1988). Folding and imbrication of the Indian crust during Himalayan collision. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 326(1589), 89–116.

    Google Scholar 

  • Daetwyler, C., & Kidwell, A. (1959). The Gulf of Batabano, a modern carbonate basin. Dubai: Verlagnichtermittelbar.

    Google Scholar 

  • Davis, W. M. (1930). Origin of limestone caverns. Bulletin of the Geological Society of America, 41(3), 475–628.

    Google Scholar 

  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In: W.E. Ham (Ed.), Classification of Carbonate Rocks (pp. 108–121). Memoir American Association of Petroleum

  • Ehrenberg, S. N., Eberli, G. P., Keramati, M., & Moallemi, S. A. (2006). Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. Aapg Bulletin, 90(1), 91–114.

    Google Scholar 

  • Emery, D., & Myers, K. (1996). Sequence stratigraphy. Oxford: Wiley.

    Google Scholar 

  • Farah, A., Mirza, M. A., Ahmad, M. A., & Butt, M. H. (1977). Gravity field of the buried shield in the Punjab Plain, Pakistan. Geological Society of America Bulletin, 88(8), 1147–1155.

    Google Scholar 

  • Faruqi, S. (1986). Pre-Cambrian oil in the Salt Range and Potwar Pakistan. Kashmir Journal of Geology, 4, 33–50.

    Google Scholar 

  • Fatmi, A., Hyderi, I., & Anwar, M. (1990). Occurrence of the Lower Jurassic Ammonoid genus Bouleiceras from the surghar range with a revised nomenclature of the Mesozoic Rocks of the Salt Range and Trans Indus Ranges (Upper Indus Basin). Geology Bulletin Punjab University, 25, 38–46.

    Google Scholar 

  • Flugel, E. (2004). Microfacies of carbonate rocks: Analysis, interpretation (Vol. 1, pp. 1–996). Berlin: Berlin and Heidelbert GmbH & Co.

    Google Scholar 

  • Gee, E. (1980). Salt Range series geological maps, 1: 50 000, 6 sheets. Directorate of Overseas Surveys, United Kingdom, for the Government of Pakistan and Pakistan Geological Survey.

  • Gee, E. R. (1947). Further note on the age of the saline series of the Punjab and of Kohat. Saint Paul: Pioneer Press.

    Google Scholar 

  • Gee, E., & Gee, D. (1989). Overview of the geology and structure of the Salt Range, with observations on related areas of northern Pakistan. Geological Society of America Special Papers, 232, 95–112.

    Google Scholar 

  • Hallam, A., & Maynard, J. (1987). The iron ores and associated sediments of the Chichali formation (Oxfordian to Valanginian) of the Trans-Indus Salt Range, Pakistan. Journal of the Geological Society, 144(1), 107–114.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1988). Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. Tulsa: SEPM.

    Google Scholar 

  • Hayat, M., ur Rahman, M., Khan, N. A., & Ali, F. (2016). Sedimentology, sequence stratigraphy and reservoir characterization of Samana Suk formation exposed in Namal Gorge Section, Salt Range, Mianwali, Punjab, Pakistan. International Journal of Economic and Environmental Geology, 9, 4–15.

    Google Scholar 

  • Hussain, H. S., Fayaz, M., Haneef, M., Hanif, M., Jan, I. U., & Gul, B. (2013). Microfacies and diagenetic-fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. Journal of Himalayan Earth Science, 46(2). 41–53

  • Iqbal, S., Jan, I. U., & Hanif, M. (2014). The Mianwali and Tredian formations: An example of the Triassic progradational deltaic system in the low-latitude western Salt Range, Pakistan. Arabian Journal for Science and Engineering, 39(7), 5489–5507.

    Google Scholar 

  • Jaswal, T. M., Lillie, R. J., & Lawrence, R. D. (1997). Structure and evolution of the northern Potwar deformed zone, Pakistan. AAPG Bulletin, 81(2), 308–328.

    Google Scholar 

  • Jaumé, S. C., & Lillie, R. J. (1988). Mechanics of the Salt Range-Potwar Plateau, Pakistan: A fold-and-thrust belt underlain by evaporites. Tectonics, 7(1), 57–71.

    Google Scholar 

  • Johnson, G. D., Johnson, N. M., Opdyke, N. D., & Tahirkheli, R. (1979). Magnetic reversal stratigraphy and sedimentary tectonic history of the Upper Siwalik Group, eastern Salt Range and southwestern Kashmir. Geodynamics of Pakistan (pp. 149–165). Pakistan: Geological Survey of Pakistan Quetta.

    Google Scholar 

  • Jorfi, L., El Süss, M. P., Aigner, T., & Mhammdi, N. (2015). Triassic-Quaternary sequance stratigraphy of the Tarfaya Basin (Moroccan Atlantic): Structural evolution, eutasy and Sedimentation. Journal of Petroleum Geology, 38, 77–98.

    Google Scholar 

  • Kadri, I. B. (1995). Petroleum geology of Pakistan. Pakistan: Pakistan Petroleum Limited.

    Google Scholar 

  • Kazmi, A. H., & Jan, M. Q. (1997). Geology and tectonics of Pakistan. Santa Ana: Graphic Publishers.

    Google Scholar 

  • Khan, M. A., Ahmed, R., Raza, H. A., & Kemal, A. (1986). Geology of petroleum in Kohat-Potwar depression, Pakistan. AAPG Bulletin, 70(4), 396–414.

    Google Scholar 

  • Khan, E., Saleem, M., Naseem, A. A., Ahmad, W., Yaseen, M., & Khan, T. U. (2020). Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur Basin, NW Himalayas, Pakistan. Carbonates and Evaporites, 35(3), 1–17.

    Google Scholar 

  • Kinsman, D. (1964). Reef coral tolerance of high temperatures and salinities. Nature, 202(4939), 1280–1282.

    Google Scholar 

  • Latif, M. (1970). Explanatory notes on the geology of southeastern Hazara to accompany the revised geological map. Jahrbuch der Geologischen Bundesanstalt, Sonderband, 15, 5–20.

    Google Scholar 

  • Lillie, R. J., Johnson, G. D., Yousuf, M., Zamin, A. S. H., Yeats, R. S. (1987). Structural development within the Himalayan foreland fold-and thrust belt of Pakistan. In: C. Beaumont, A. J. Tankard (Eds.), Sedimentary Basin and Basin Forming Mechanisms (pp. 379–392). Memoirs of the Canadian Society of Petroleum Geologists

  • Long, J. C., & Witherspoon, P. A. (1985). The relationship of the degree of interconnection to permeability in fracture networks. Journal of Geophysical Research: Solid Earth, 90(B4), 3087–3098.

    Google Scholar 

  • Martin, N. (1956). The petrology of the Khewratrap rock. Salt Range, West Pakistan: Geological Survey of Pakistan Records, 8(pt 1), 45–48.

    Google Scholar 

  • McDougall, J. W., & Khan, S. H. (1990). Strike-slip faulting in a foreland fold-thrust belt: The Kalabagh Fault and Western Salt Range, Pakistan. Tectonics, 9(5), 1061–1075.

    Google Scholar 

  • Mensink, V. H., Mertmann, D., Bochum, D., & Ahmad, S. (1988). Facies development during the Jurassic of the Trans Indus Ranges, Pakistan, Neues, Jahrb. Geological Paleontological Memorial, Germany, 3, 153–166.

    Google Scholar 

  • Mertmann, D., & Ahmad, S. (1994). Shinawari and Samana Suk Formations of the Surghar and salt ranges, Pakistan: Facies and depositional environments. Zeitschrift der Deutschen Geologischen Gesellschaft, 305–317.

  • Middlemiss, C. S. (1896). The geology of Hazara and the Black Mountain (Vol. 26). Geological Survey.

  • Morad, S., Ketzer, J., & De Ros, L. F. (2000). Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120.

    Google Scholar 

  • Morad, S., Ketzer, J., & De Ros, L. (2012). Linking diagenesis to sequence stratigraphy: An integrated tool for understanding and predicting reservoir quality distribution. Linking Diagenesis to Sequence Stratigraphy Special Publication of the International Association of Sedimentologists, 45, 1–36.

    Google Scholar 

  • Nichols, G. (2009). Sedimentology and stratigraphy (2nd ed.). Oxford: Wiley.

    Google Scholar 

  • Nizami, A., & Sheikh, R. (2007). Microfacies analysis and Digenetic Study of Samana Suk Formation, Chichali Nala Section, Surghar Range. Trans Indus Ranges, Pakistan. Geological Bulletin Punjab University, 42, 37–52.

    Google Scholar 

  • Osburn, M., Grotzinger, J., & Bergmann, K. (2014). Facies, stratigraphy, and evolution of a middle Ediacaran carbonate ramp: Khufai Formation, Sultanate of Oman Stratigraphic Characterization of the Khufai Formation, Oman. AAPG Bulletin, 98(8), 1631–1667.

    Google Scholar 

  • Pennock, E. S., Lillie, R. J., Zaman, A. S. H., & Yousaf, M. (1989). Structural interpretation of seismic reflection data from eastern Salt Range and Potwar Plateau, Pakistan. AAPG Bulletin, 73(7), 841–857.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstone. Berlin: Springer.

    Google Scholar 

  • Posamentier, H. W., & Allen, G. P. (1999). Siliciclastic sequence stratigraphy: Concepts and applications (Vol. 7). Tulsa: SEPM (Society for Sedimentary Geology).

    Google Scholar 

  • Powell, C. M. (1979). A speculative tectonic history of Pakistan and surroundings: Some constraints from the Indian Ocean. In: A. Farah, K. A. DeJong (Eds.), Geodynamics of Pakistan (pp 5–24). Geological Survey of Pakistan

  • Qureshi, M. K. A., Butt, A. A., & Ghazi, S. (2008). Shallow shelf sedimentation of the Jurassic Samana Suk Limestone, Kala Chitta Range, Lesser Himalayas, Pakistan. Geological Bulletin Punjab University, 43, 1–14.

    Google Scholar 

  • Rowley, D. B. (1996). Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145(1–4), 1–13.

    Google Scholar 

  • Saboor, A., Khan, N., Hanif, M., Jan, I. U., Ahmad, S., & Ahmad, W. (2020). Paleo-depositional and sequence stratigraphic setting of the middle Jurassic Samana Suk Formation at Tarnawai Section, lesser Himalayas and its regional comparison. Himalayan Geology Journal, 41(2), 121–132.

    Google Scholar 

  • Schlumberger. (2007). Schlumberger Market Analysis (p. 14). Schlumberger: Houston.

    Google Scholar 

  • Selley, R. C. (2000). Applied sedimentology. Oxford: Elsevier.

    Google Scholar 

  • Shah, S. M. I. (2009). Stratigraphy of Pakistan. Karachi, Pakistan: Memoir of the Geological Survey of Pakistan Vol. 22

  • Shah, M. M., Ahmed, W., Ahsan, N., & Lisa, M. (2016). Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): Petrography, geochemistry, and petrophysical characteristics. Arabian Journal of Geosciences, 9(5), 405.

    Google Scholar 

  • Shah, M., Rahim, H., Hassan, S. A., Ahmad, I., Vamberger, M., Spitzweg, C., et al. (2019). Facies control on selective dolomitization and its impact on reservoir heterogeneities in the Samana Suk Formation (middle Jurassic), Southern Hazara Basin (NW Himalaya, Pakistan): An outcrop analogue. Geosciences Journal, 24, 1–20.

    Google Scholar 

  • Shinn, E. A. (1969). Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12(1–2), 109–144.

    Google Scholar 

  • Tucker, M. E. (2003). Sedimentary rocks in the field. Oxford: Wiley.

    Google Scholar 

  • Tucker, M. E. (2011). Sedimentary rocks in the field: A practical guide (Vol. 38). Oxford: Wiley.

    Google Scholar 

  • Tucker, M. E., & Wright, V. P. (2009). Carbonate sedimentology. Oxford: Wiley.

    Google Scholar 

  • Vail, P. R. (1987). Seismic stratigraphic interpretation using sequence stratigraphy— Part 1: Seismic stratigraphy interpretation procedure. In: A. W. Bally (Ed.), Atlas of seismic stratigraphy (pp. 1–10).  American Association of Petroleum Geologists Studies in Geology

  • Wadood, B., Awais, M., Khan, S., Ahmad, A., Ahmad, L., & Muslim, M. (2019). Diagenetic studies of the Cretaceous turbidities, Sulaiman Range, Pakistan: Implications for reservoir quality. Journal of Himalayan Earth Sciences, 52(1), 106–119.

    Google Scholar 

  • Wadood, B., Khan, S., Khan, A., Khan, M. W., Liu, Y., Li, H., et al. (2020a). Diachroneity in the closure of the eastern Tethys Seaway: Evidence from the cessation of marine sedimentation in northern Pakistan. Australian Journal of Earth Sciences. https://doi.org/10.1080/08120099.2020.1782472.

    Article  Google Scholar 

  • Wadood, B., Khan, S., Li, H., Liu, Y., Ahmad, S., & Jiao, X. (2020b). Sequence Stratigraphic Framework of the Jurassic Samana Suk Carbonate Formation, North Pakistan. Implications for Reservoir Potential. https://doi.org/10.1007/s13369-020-04654-9.

    Article  Google Scholar 

  • Wadood, B., Khan, S., Liu, Y., Li, H., & Rahman, A. (2020c). Investigating the impact of diagenesis on reservoir quality of the Jurassic shallow shelfal carbonate deposits: Kala Chitta Range, North Pakistan. Geological Journal. https://doi.org/10.1002/gj.3968.

    Article  Google Scholar 

  • Wilson, J. L. (1975). The lower carboniferous Waulsortian facies. CarbonateFacies in Geologic History (pp. 148–168). Berlin: Springer.

    Google Scholar 

  • Wright, V. P., & Tucker, M. (1990). Carbonate sediments and limestones: Constituents. Carbonate sedimentology (pp. 1–27). Oxford: Blackwell.

    Google Scholar 

  • Yeats, R. S., & Hussain, A. (1987). Timing of structural events in the Himalayan foothills of northwestern Pakistan. Geological Society of America Bulletin, 99(2), 161–176.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Geology, University of Swabi, Pakistan and Centralized Resource Laboratory, the University of Peshawar, Pakistan for their help and support during laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Wadood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. V. Alves Martins.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadood, B., Aziz, M., Ali, J. et al. Depositional, diagenetic, and sequence stratigraphic constrains on reservoir characterization: a case study of middle Jurassic Samana Suk Formation, western Salt Range, Pakistan. J. Sediment. Environ. 6, 131–147 (2021). https://doi.org/10.1007/s43217-020-00043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-020-00043-2

Keywords

Navigation