Skip to main content
Log in

Statistical assessment of background levels for metal contamination from a subtropical estuarine system in the SW Atlantic (Paranaguá Estuarine System, Brazil)

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Trace metal background levels determination is essential for the proper assessment of the contamination status of a region. This study aims to integrate geochemical and statistical methods for the reliable determination of background levels, applying it to the sediments of the Paranaguá Estuarine System (PES), a large subtropical estuarine system of international importance since it is considered a World Heritage Site and Biosphere Reserve and it harbors the main South American grain shipping port. Prediction Interval (PI) was applied as a chemometric tool to evaluate metal enrichment without a reference level and assess a regional background. Moreover, the sources and concentrations of major and trace elements were assessed in surface sediments from 135 sampling sites located in the Paranaguá Estuarine System (PES). PES surface sediment elements concentrations may be considered lower than those found in other anthropized environments indicating no significant contamination for most of the studied elements (Cr, Cu, Ni, Pb and Zn). The levels of As in the PES may be related to the geochemical characteristics of the adjacent drainage basin and the occurrence of phosphate rocks, which contain As in their composition. However, As was also influenced by anthropogenic inputs either from agricultural activities or fertilizer industries working with mining phosphate in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abreu-Mota, M. A., Barboza, C. A. M., Bícego, M. C., & Martins, C. C. (2014). Sedimentary biomarkers along a contamination gradient in a human-impacted sub-estuary in Southern Brazil: A multi-parameter approach based on spatial and seasonal variability. Chemosphere,103, 156–163. https://doi.org/10.1016/j.chemosphere.2013.11.052.

    Article  Google Scholar 

  • Angeli, J. L. F., Rubio, B., Kim, B. S. M., Ferreira, P. A. L., Siegle, E., & Figueira, R. C. L. (2019). Environmental changes reflected by sedimentary geochemistry for the last one hundred years of a tropical estuary. Journal of Marine Systems,189, 36–49. https://doi.org/10.1016/j.jmarsys.2018.09.004.

    Article  Google Scholar 

  • Angulo, R. J., Souza, M. C., & Lamour, M. R. (2006). Coastal erosion problems induced by dredging activities in the navigation channel of Paranaguá and São Francisco do Sul harbor, Southern Brazil. Journal of Coastal Research,39, 1801–1803.

    Google Scholar 

  • Anjos, V. E., Machado, E. C., & Grassi, M. T. (2012). Biogeochemical behavior of arsenic species at Paranaguá Estuarine Complex, Southern Brazil. Aquatic Geochemistry,18, 407–420. https://doi.org/10.1007/s10498-012-9161-8.

    Article  Google Scholar 

  • Balaji, J., Zhao, Q., Lu, Q., Wang, J., & Reddy, K. R. (2015). Effects of freshwater input on trace element pollution in salt marsh soils of a typical coastal estuary, China. Journal of Hydrology,520, 186–192. https://doi.org/10.1016/j.jhydrol.2014.11.007.

    Article  Google Scholar 

  • Bigarella, J. J., Becker, R. D., Mattos, D. J., & Andwerner, A. (1978). A Serra do Mar e a Porção Oriental do Estado do Paraná: Curitiba (p. 249). Curitiba: SEPL/ADEA.

    Google Scholar 

  • Birch, G. (2017). Determination of sediment metal background concentrations and enrichment in marine environments – A critical review. Science of the Total Environment,580, 813–883. https://doi.org/10.1016/j.scitotenv.2016.12.028.

    Article  Google Scholar 

  • Cabral, A. C., & Martins, C. C. (2018). Insights about sources, distribution, and degradation of sewage and biogenic molecular markers in surficial sediments and suspended particulate matter from a human-impacted subtropical estuary. Environmental Pollution,241, 1071–1081. https://doi.org/10.1016/j.envpol.2018.06.032.

    Article  Google Scholar 

  • Cabral, A. C., Stark, J. S., Kolm, H. E., & Martins, C. C. (2018). An integrated evaluation of some faecal indicator bacteria (FIB) and chemical markers as potential tools for monitoring sewage contamination in subtropical estuaries. Environmental Pollution,235, 739–749. https://doi.org/10.1016/jenvpol.2017.12.109.

    Article  Google Scholar 

  • Cagnin, R. C., Quaresma, V. S., Chaillou, G., Franco, T., & Bastos, A. C. (2017). Arsenic enrichment in sediment on the eastern continental shelf of Brazil. Science of the Total Environment,607–608, 304–316. https://doi.org/10.1016/j.scitotenv.2017.06.162.

    Article  Google Scholar 

  • Cardoso, F. D., Dauner, A. L. L., & Martins, C. C. (2016). A critical and comparative appraisal of polycyclic aromatic hydrocarbons in sediments and suspended particulate material from a large South American subtropical estuary. Environmental Pollution,214, 219–229. https://doi.org/10.1016/j.envpol.2016.04.011.

    Article  Google Scholar 

  • Cattani, P. E., & Lamour, M. R. (2016). Consideration regarding sedimentation rates along the E-W axis of the Paranaguá Estuarine Complex, Brazil: A Bathymetric approach. Journal of Coastal Research,32(3), 619–628. https://doi.org/10.2112/jcoastres-d-14-00099.1.

    Article  Google Scholar 

  • Chester, R. (1990). Marine Geochemistry. London: Chapman and Hall.

    Book  Google Scholar 

  • Choueri, R. B., Cesar, A., Torres, R. J., Abessa, D. M. S., Morais, R. D., Pereira, C. D. S., et al. (2009). Integrated sediment quality assessment in Paranaguá Estuarine System, southern Brazil. Ecotoxicology and Environmental Safety,72, 1824–1831. https://doi.org/10.1016/j.ecoenv.2008.12.005.

    Article  Google Scholar 

  • Combi, T., Taniguchi, S., Ferreira, P. A., Mansur, A. V., Figueira, R. C. L., Mahiques, M. M., et al. (2013). Sources and temporal patterns of polychlorinated biphenyls around a large South American grain shipping port (Paranaguá Estuarine System, Brazil). Archives of Environmental Contamination and Toxicology,64, 573–582. https://doi.org/10.1007/s00244-012-9872-2.

    Article  Google Scholar 

  • CONAMA 454. (2012). National Environment Council. General Guidelines for evaluation of the material to be dredged in Brazilian waters

  • Cunha, B., Machado, W., Marra, A., Araújo, D., Garnier, J., Martins, A., et al. (2018). Lead source assessment by isotopic and elementary composition in the transition from pristine to polluted condition of coastal sediments. Journal of Sedimentary Environments,3(1), 46–53. https://doi.org/10.12957/jse.2018.33890.

    Article  Google Scholar 

  • Damasio, B. V., Timoszczuk, C. T., Kim, B. S. M., Sousa, S. H. M., Bícego, M. C., Siegle, E., et al. (2020). Impacts of hydrodynamics and pollutants on foraminiferal fauna distribution in the Santos Estuary (SE Brazil). Journal of Sedimentary Environments,5, 12. https://doi.org/10.1007/s43217-020-00003-w.

    Article  Google Scholar 

  • Denardin, V. F., Loureiro, W., & Sulzbach, M. T. (2008). Distribuição de benefícios ecossistêmicos: o caso do ICMS ecológico no litoral paranaense. Redes,13, 184–198.

    Google Scholar 

  • Díaz Morales, S. J., Guerra, J. V., Nunes, M. A. S., Alves Martins, M. V., Souza, A. M., & Geraldes, M. C. (2019a). Anthropogenic impacts on the western sector of Sepetiba Bay (SE do Brazil) accessed by the Pb isotope composition of surface sediments. Journal of Sedimentary Environments,4(3), 291–311. https://doi.org/10.12957/jse.2019.45269.

    Article  Google Scholar 

  • Díaz Morales, S. J., Guerra, J. V., Nunes, M. A. S., Souza, A. M., & Geraldes, M. C. (2019b). Evaluation of the environmental state of the western sector of Sepetiba Bay (SE Brazil): trace metal contamination. Journal of Sedimentary Environments,4(2), 174–188. https://doi.org/10.12957/jse.2019.43764.

    Article  Google Scholar 

  • Filzmoser, P., Garrett, R. G., & Reimann, C. (2005). Multivariate outlier detection in exploration geochemistry. Computers & Geosciences,31, 579–587. https://doi.org/10.1016/j.cageo.2004.11.013.

    Article  Google Scholar 

  • Fukue, M., Yanai, M., Sato, Y., Fujikawa, T., Furukawa, Y., & Tani, S. (2006). Background values for evaluation of heavy metal contamination in sediments. Journal of Hazardous Materials,136, 111–119. https://doi.org/10.1016/j.jhazmat.2005.11.020.

    Article  Google Scholar 

  • Garcia, M. R., Cattani, A. P., Lana, P. C., Figueira, R. C. L., & Martins, C. C. (2019). Petroleum biomarkers as tracers of low-level chronic oil contamination of coastal environments: A systematic approach in a subtropical mangrove. Environmental Pollution,249, 1060–1070. https://doi.org/10.1016/j.envpol.2019.03.006.

    Article  Google Scholar 

  • Gebhardt, A., Schoster, F., Gaye-Haake, B., Beeskow, B., Rachold, V., Unger, D., et al. (2005). The turbidity maximum zone of the Yenisei River (Siberia) and its impact on organic and inorganic proxies. Estuarine, Coastal and Shelf Science,65, 61–73. https://doi.org/10.1016/j.ecss.2005.05.007.

    Article  Google Scholar 

  • Hernández-Crespo, C., & Martín, M. (2015). Determination of background levels and pollution assessment for seven metals (Cd, Cu, Ni, Pb, Zn, Fe, Mn) in sediments of a Mediterranean coastal lagoon. CATENA,133, 205–214. https://doi.org/10.1016/j.catena.2015.05.013.

    Article  Google Scholar 

  • Hobbie, J. E. (2000). Estuarine Science: A Synthetic Approach to Research and Practice. Washington, DC: Island Press.

    Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística). (2014). Systematic Survey of Agricultural Production. Brazilian Institute of Geography and Statistics. http://www.ibge.gov.br.

  • Kelly, C. A., & Rudd, J. W. M. (2018). Transport of mercury on the finest particles results in high sediment concentrations in the absence of significant ongoing sources. Science of the Total Environment,637–638, 1471–1479. https://doi.org/10.1016/j.scitotenv.2018.04.234.

    Article  Google Scholar 

  • Kim, B. S. M., Angeli, J. L. F., Ferreira, P. A. L., Sartoretto, J. R., Miyoshi, C., Mahiques, M. M., et al. (2017). Use of a chemometric tool to establish the regional background and assess trace metal enrichment at Baixada Santista—southeastern Brazil. Chemosphere,166, 372–379. https://doi.org/10.1016/j.chemosphere.2016.09.132.

    Article  Google Scholar 

  • Kim, B. S. M., Salaroli, A. B., Ferreira, P. A. L., Sartoretto, J. R., Mahiques, M. M., & Figueira, R. C. L. (2016). Spatial distribution and enrichment assessment of heavy metals in surface sediments from Baixada Santista, Southeastern Brazil. Marine Pollution Bulletin,103, 333–338. https://doi.org/10.1016/j.marpolbul.2015.12.041.

    Article  Google Scholar 

  • Kolm, H. E., Mazzuco, R., Souza, P. S. A., Shoenenberger, M. F., & Pimentone, M. R. (2002). Spatial variation of bacteria in surface water of Paranaguá and Antonina Bays, Paraná, Brazil. Brazilian Archives of Biology and Technology,45, 27–34. https://doi.org/10.1590/S1516-89132002000100005.

    Article  Google Scholar 

  • Lamour, M. R., Angulo, R. J., & Soares, C. R. (2007). Bathymetrical Evolution of critical shoaling sectors on Galheta Channel, navigable access to Paranaguá Bay, Brazil. Journal of Coastal Research,23(1), 49–58. https://doi.org/10.2112/03-0063.1.

    Article  Google Scholar 

  • Lamour, M. R., Soares, C. R., & Carrilho, J. C. (2004). Textural parameters maps of bottom sediments on Paranaguá Bay Complex — PR. Boletim Paranaense de Geociências,55, 77–82.

    Article  Google Scholar 

  • Lana, P. C., Marone, E., Lopes, R. M., Machado, E. C. (2001). The subtropical estuarine complex of Paranaguá Bay, Brazil. In: U. Seeliger, L. D. Lacerda, R. B. Kjerfve (Eds.), Coastal marine ecosystem of Latin America (pp. 131–145). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Long, E. D., Macdonald, D. D., Smith, S. L., & Calder, F. D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management,19(1), 81–97.

    Article  Google Scholar 

  • Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews,32, 235–283. https://doi.org/10.1016/0012-8552(92)9001-A.

    Article  Google Scholar 

  • Machado, A. A. S., Spencer, K., Kloas, W., Toffolon, M., & Zarfl, C. (2016). Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Science of the Total Environment,541, 268–281. https://doi.org/10.1016/j.scitotenv.2015.09.045.

    Article  Google Scholar 

  • Mantovanelli, A., Marone, E., da Silva, E. T., Lautert, I. F., Klingenfuss, M. S., Prata, V. P., Jr., et al. (2004). Combined tidal velocity and duration asymmetries as a determinant of water transport and residual flow in Paranaguá Bay estuary. Estuarine, Coastal and Shelf Science,59, 523–537. https://doi.org/10.1016/j.ecss.2003.09.001.

    Article  Google Scholar 

  • Martins, C. C., Bícego, M. C., Figueira, R. C. L., Angelli, J. L. F., Combi, T., Gallice, W. C., et al. (2012). Multi-molecular markers and metals as tracers of organic matter inputs and contamination status from an Environmental Protection Area in the SW Atlantic (Laranjeiras Bay, Brazil). Science of the Total Environment,417–418, 158–168. https://doi.org/10.1016/j.scitotenv.2011.11.086.

    Article  Google Scholar 

  • Martins, C. C., Braun, J. A. F., Seyffert, B. H., Machado, E. C., & Fillmann, G. (2010). Anthropogenic organic matter inputs indicated by sedimentary fecal steroids in a large South American tropical estuary (Paranaguá estuarine system, Brazil). Marine Pollution Bulletin,60, 2137–2143. https://doi.org/10.1016/j.marpolbul.2010.07.027.

    Article  Google Scholar 

  • Mayerle, R., Narayanan, R., Etri, T., & Wahab, A. K. A. (2015). A case study of sediment transport in the Paranaguá Estuary Complex in Brazil. Ocean Engineering,106, 161–174. https://doi.org/10.1016/j.oceaneng.2015.06.025.

    Article  Google Scholar 

  • Meyers, P. A. (1997). Organic geochemical proxies of palaeoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry,27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1.

    Article  Google Scholar 

  • Mirlean, N., Andrus, V. E., Baisch, P., Griep, G., & Casartelli, M. R. (2003). Arsenic pollution in Patos lagoon estuarine sediments, Brazil. Marine Pollution Bulletin,46, 1480–1484. https://doi.org/10.1016/S0025-326X(03)00257-1.

    Article  Google Scholar 

  • Mirlean, N., Baisch, P., Travassos, M. P., & Nassar, C. (2011). Calcareous algae bioclast contribution to sediment enrichment by arsenic on the Brazilian subtropical coast. Geo-Marine Letters,31, 65–73. https://doi.org/10.1007/s00367-010-0215-x.

    Article  Google Scholar 

  • Mirlean, N., Medeanic, S., Garcia, F. A., Travassos, M. P., & Baisch, P. (2012). Arsenic enrichment in shelf and coastal sediment of the Brazilian subtropics. Continental Shelf Research,35, 129–136. https://doi.org/10.1016/j.csr.2012.01.006.

    Article  Google Scholar 

  • Mirlean, N., & Roisenberg, A. (2006). The effect of emission of fertilizer production on the environment contamination by cadmium and arsenic in southern Brazil. Environmental Pollution,143, 335–340. https://doi.org/10.1016/j.envpol.2005.11.022.

    Article  Google Scholar 

  • Noernberg, M. A. (2001). Processos Morfodinâmicos no Complexo Estuarino de Paranaguá, Paraná, Brasil: Um Estudo a Partir de Dados in situ e LANDSATTM. Curitiba, Brazil: Universidade Federal do Paraná, Ph.D. thesis, 127p

  • Noernberg, M., Marone, E., & Angulo, R. (2006). Coastal currents and sediment transport in Paranaguá Estuary Complex navigation channel. Boletim Paranense de Geociências,60–61, 45–54.

    Google Scholar 

  • Pinto, A. F. S., Ramalho, J. C. M., Borghi, L., Carelli, T. G., Plantz, J. B., Pereira, E., et al. (2019). Background concentrations of chemical elements in Sepetiba Bay (SE Brazil). Journal of Sedimentary Environments,4(1), 108–123. https://doi.org/10.12957/jse.2019.40992.

    Article  Google Scholar 

  • Possatto, F. E., Spach, H. L., Cattani, A. P., Lamour, M. R., Santos, L. O., Cordeiro, N. M. A., et al. (2015). Marine debris in a World Heritage Listed Brazilian Estuary. Marine Pollution Bulletin,91, 548–553. https://doi.org/10.1016/marpolbul.2014.09.032.

    Article  Google Scholar 

  • Pregnolato, L. A., Viana, R. A., Passos, C. C., Misailidis, M. L., & Duleba, W. (2018). Ammonia–Elphidium index as a proxy for marine pollution assessment. Northeast Brazil. Journal of Sedimentary Environments,3(3), 176–186. https://doi.org/10.12957/jse.2018.38001.

    Article  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment,350, 12–27. https://doi.org/10.1016/j.scitotenv.2005.01.047.

    Article  Google Scholar 

  • Reimann, C., Matschullat, J., Birke, M., & Salminen, R. (2009). Arsenic distribution in the environment: the effects of scale. Applied Geochemistry,24, 1147–1167. https://doi.org/10.1016/j.apgeochem.2009.03.013.

    Article  Google Scholar 

  • Ridgway, J., & Shimmield, G. (2002). Estuaries as repositories of historical contamination and their impact on shelf seas. Estuarine Coastal and Shelf Science,55, 903–928. https://doi.org/10.1006/ecss.2002.1035.

    Article  Google Scholar 

  • Rocha, M. L., Sá, F., Campos, M. S., Grassi, M. T., Combi, T., & Machado, E. C. (2017). Metals impact into the Paranaguá Estuarine Complex (Brazil) during the exceptional flood of 2011. Brazilian Journal of Oceanography,65(1), 54–68. https://doi.org/10.1590/S1679-87592017127706501.

    Article  Google Scholar 

  • Rothwell, R. G., & Croudace, I. W. (2015). Twenty years of XRF core scanning marine sediments: What do geochemical proxies tell us? In R. G. Rothwell & I. Croudace (Eds.), Micro-XRF Studies of Sediment Cores, Developments in Paleoenvironmental Research 17 (pp. 25–102). Dordrecht Heidelberg New York London: Springer.

    Chapter  Google Scholar 

  • Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin,40(11), 968–980. https://doi.org/10.1016/S0025-326X(00)00039-4.

    Article  Google Scholar 

  • Rutherford, P. M., Dudas, M. J., & Samek, R. A. (1994). Environmental impact of phosphogypsum. Science of the Total Environment,149, 1–38.

    Article  Google Scholar 

  • Sá, F., Machado, E. C., Angulo, R. J., Veiga, F. A., & Brandini, N. (2006). Arsenic and heavy metals in sediments near Paranaguá port, Southern Brazil. Journal of Coastal Research,39, 1066–1068.

    Google Scholar 

  • Sá, F., Sanders, C. J., Patchineelam, S. R., Machado, E. C., & Lombardi, A. T. (2015). Arsenic fractionation in estuarine sediments: Does coastal eutrophication influence As behavior? Marine Pollution Bulletin,96, 496–501. https://doi.org/10.1016/j.marpolbul.2015.04.037.

    Article  Google Scholar 

  • Strawn, D. G. (2018). Review of interaction between phosphorus and arsenic in soils from four case studies. Geochemical Transactions,19(10), 1–13. https://doi.org/10.1186/s12932-018-0055-6.

    Article  Google Scholar 

  • Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin,72, 175–192. https://doi.org/10.1130/0016-7606(1961)72.

    Article  Google Scholar 

  • UN. (2015). Resolution adopted by the General Assembly on 25 September A/RES/70/1. Seventieth Session of the United Nations General Assembly.

  • Unda-Calvo, J., Ruiz-Romera, E., de Vallejuelo, S. F. O., Martínez-Santos, M., & Gredilla, A. (2019). Evaluating the role of particle size on urban environmental geochemistry of metals in surface sediments. Science of the Total Environment,646, 121–133. https://doi.org/10.1016/j.scitotenv.2018.07.172.

    Article  Google Scholar 

  • UNEP. (1995). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Reference Methods Forest Marine Pollution Studies,63, 85.

    Google Scholar 

  • UNESCO. (1999). United Nations Educational, Scientific and Cultural Organization. Atlantic Forest South-East Reserves, 1999. [WWW Document]. <http://whc.unesco.org/en/list/893. Accessed 26 Sep 2018).

  • USEPA. (1996). Method 3050B. Acid digestion of sediments, sludges and soil. Revision 2, December, 1996.

  • USEPA. (2007). SW-846 test methods for evaluating solid waste, physical/chemical methods, method 6010C: Inductively coupled plasma-atomic emission spectrometry. Revision 3, February, 2007.

  • Wedepohl, K. H. (1971). Environmental influences on the chemical composition of shales and clays. In L. H. Ahrens, F. Ress, S. K. Runcorn, & H. C. Urey (Eds.), Physics and Chemistry of the Earth (Vol. 8, pp. 307–331). Oxford: Pergamon.

    Google Scholar 

  • Weltje, G. J., & von Eynatten, H. (2004). Quantitative provenance analysis of sediments: A review and outlook. Sediment Geology,171, 1–11. https://doi.org/10.1016/j.sedgeo.2004.05.007.

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal and Shelf Science,54, 1051–1070. https://doi.org/10.1006/ecss.2001.0879.

    Article  Google Scholar 

Download references

Acknowledgements

J.F.L Angeli and I.M. Paladino would like to thank CNPq (Brazilian National Council for Scientific and Technological Development) for the scholarships. C.C. Martins was granted by CNPq (Brazilian National Council for Scientific and Technological Development) (441265/2017-0) Finally, this work is resulted of EQCEP project (Historical input and future perspectives related to the chemical stressors occurrence in the Paranaguá Estuarine System) sponsored by CNPq and Brazilian Ministry of Science, Technology, Innovation and Communication (441265/2017-0) and coordinated by M.M. Mahiques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Lourenço Friedmann Angeli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by M. V. Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angeli, J.L.F., Kim, B.S.M., Paladino, Í.M. et al. Statistical assessment of background levels for metal contamination from a subtropical estuarine system in the SW Atlantic (Paranaguá Estuarine System, Brazil). J. Sediment. Environ. 5, 137–150 (2020). https://doi.org/10.1007/s43217-020-00008-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-020-00008-5

Keywords

Navigation