Skip to main content
Log in

Advancements in configuration structures and fabrication techniques for achieving stability in perovskite solar cells: a comprehensive review

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

While perovskite solar cells (PSCs) have exhibited an impressive power conversion efficiency (PCE) of 26.1%, their inherent instability poses a significant obstacle to their widespread commercialisation. Researchers worldwide have diligently employed diverse strategies to enhance their stability, ranging from configuration modifications to employing varied manufacturing techniques. This review meticulously explores the latest advancements in PSC devices, focusing primarily on the strategies employed to fortify stability, with an emphasis on configuration structures and fabrication methods. The study explores the critical stability parameters and considerations relevant to the long-term stability of PSC configurations. A comprehensive examination of the evolution of PSC configurations is presented, encompassing transitions from regular to inverted designs, the introduction of hole transport layer-free designs, the incorporation of electron transport layer-free configurations, and variations in the use of organic and inorganic materials. Moreover, the review compiles pertinent articles for additional reference, providing a consolidated resource for researchers and enthusiasts in the field. This review offers recommendations to improve the stability of hybrid PSCs and provides a perspective on supporting the commercialisation of PSC technology. Addressing the stability challenges outlined in this review is crucial for unlocking the full potential of PSCs and facilitating their seamless integration into the mainstream renewable energy landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper. Any raw data files needed in another format they are available from the corresponding author upon reasonable request.

References

  1. I.Y. Kim, J. Ko, T.-Y. Ahn, H.-W. Cheong, Y.S. Yoon, Energy materials for energy conversion and storage: focus on research conducted in Korea. J. Korean Ceram. Soc. 58, 645–661 (2021). https://doi.org/10.1007/s43207-021-00152-2

    Article  CAS  Google Scholar 

  2. B. Hazmi, M. Beygisangchin, U. Rashid, W.N.A.W. Mokhtar, T. Tsubota, A. Alsalme, C. Ngamcharussrivichai, Glycerol-based retrievable heterogeneous catalysts for single-pot esterification of palm fatty acid distillate to biodiesel. Molecules 27, 7142 (2022). https://doi.org/10.3390/molecules27207142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. U. Rashid, C.L. Lee, B. Hazmi, S. Gamal, M. Beygisangchin, Standard specifications for renewable diesel, in Renewable Diesel (Elsevier, London, 2024). pp. 33–63

  4. M.M. Yashim, M.H. Sainorudin, M. Mohammad, A. Fudholi, N. Asim, H. Razali, K. Sopian, Recent advances on lightweight aerogel as a porous receiver layer for solar thermal technology application. Sol. Energy Mater. Sol. Cells 228, 111131 (2021). https://doi.org/10.1016/j.solmat.2021.111131

    Article  CAS  Google Scholar 

  5. M. Mat Yashim, M. Mohammad, N. Asim, A. Fudholi, Structure and properties of monolithic cellulose aerogels prepared from oil palm cellulose microfiber (OPMFC) using alkaline/urea solvent system potentially for solar thermal applications. J Solgel Sci Technol. 108, 47–59 (2023). https://doi.org/10.1007/s10971-023-06189-5

    Article  CAS  Google Scholar 

  6. N. Li, X. Niu, Q. Chen, H. Zhou, Towards commercialization: the operational stability of perovskite solar cells. Chem. Soc. Rev. 49, 8235–8286 (2020). https://doi.org/10.1039/D0CS00573H

    Article  CAS  PubMed  Google Scholar 

  7. N. Alias, A. Ali Umar, S.N. Sadikin, J. Ridwan, A.A. Hamzah, M.I. Ali Umar, A.A. Ehsan, M. Nurdin, Y. Zhan, Air-processable perovskite solar cells by hexamine molecule phase stabilization. ACS Omega 8, 18874–18881 (2023). https://doi.org/10.1021/acsomega.3c01236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Idrissi, O. Mounkachi, L. Bahmad, A. Benyoussef, Study of the solar perovskites: XZnF3 (X = Ag, Li or Na) by DFT and TDDFT methods. J. Korean Ceram. Soc. 60, 424–433 (2023). https://doi.org/10.1007/s43207-022-00277-y

    Article  CAS  Google Scholar 

  9. G.Y. Kim, A. Senocrate, T.-Y. Yang, G. Gregori, M. Grätzel, J. Maier, Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition. Nat. Mater. 17, 445–449 (2018). https://doi.org/10.1038/s41563-018-0038-0

    Article  CAS  PubMed  Google Scholar 

  10. S. Mahjabin, M.I. Hossain, Md.M. Haque, M.S. Bashar, M.S. Jamal, Md. Shahiduzzaman, G. Muhammad, K. Sopian, Md. Akhtaruzzaman, Sputtered WOx thin film as the electron transport layer for efficient perovskite solar cells. Appl. Phys. A 128, 358 (2022). https://doi.org/10.1007/s00339-022-05500-5

    Article  CAS  Google Scholar 

  11. N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M.S. Islam, S.A. Haque, Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nat. Commun. 8, 15218 (2017). https://doi.org/10.1038/ncomms15218

    Article  PubMed  PubMed Central  Google Scholar 

  12. Y. Kato, L.K. Ono, M.V. Lee, S. Wang, S.R. Raga, Y. Qi, Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015). https://doi.org/10.1002/admi.201500195

    Article  CAS  Google Scholar 

  13. M.S. Jamal, S.A. Shahahmadi, M.A. Abdul Wadi, P. Chelvanathan, N. Asim, H. Misran, M.I. Hossain, N. Amin, K. Sopian, Md. Akhtaruzzaman, Effect of defect density and energy level mismatch on the performance of perovskite solar cells by numerical simulation. Optik (Stuttg) 182, 1204–1210 (2019). https://doi.org/10.1016/j.ijleo.2018.12.163

    Article  CAS  Google Scholar 

  14. N. Rolston, B.L. Watson, C.D. Bailie, M.D. McGehee, J.P. Bastos, R. Gehlhaar, J.-E. Kim, D. Vak, A.T. Mallajosyula, G. Gupta, A.D. Mohite, R.H. Dauskardt, Mechanical integrity of solution-processed perovskite solar cells. Extreme Mech Lett. 9, 353–358 (2016). https://doi.org/10.1016/j.eml.2016.06.006

    Article  Google Scholar 

  15. R. Cheacharoen, N. Rolston, D. Harwood, K.A. Bush, R.H. Dauskardt, M.D. McGehee, Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy Environ. Sci. 11, 144–150 (2018). https://doi.org/10.1039/C7EE02564E

    Article  CAS  Google Scholar 

  16. N. Rolston, K.A. Bush, A.D. Printz, A. Gold-Parker, Y. Ding, M.F. Toney, M.D. McGehee, R.H. Dauskardt, Engineering stress in perovskite solar cells to improve stability. Adv. Energy Mater. 8, 1802139 (2018). https://doi.org/10.1002/aenm.201802139

    Article  CAS  Google Scholar 

  17. M. Mottakin, D.K. Sarkar, V. Selvanathan, M.J. Rashid, K. Sobayel, A.K.M. Hasan, M. Ariful Islam, G. Muhammad, M. Shahiduzzaman, M. Akhtaruzzaman, Photoelectric performance of environmentally benign Cs2TiBr 6-based perovskite solar cell using spinel NiCo2O4 as HTL. Optik (Stuttg) 272, 170232 (2023). https://doi.org/10.1016/j.ijleo.2022.170232

    Article  CAS  Google Scholar 

  18. A.R. Bowring, L. Bertoluzzi, B.C. O’Regan, M.D. McGehee, Reverse bias behavior of halide perovskite solar cells. Adv. Energy Mater. 8, 1702365 (2018). https://doi.org/10.1002/aenm.201702365

    Article  CAS  Google Scholar 

  19. Md.A. Islam, Md. Akhtaruzzaman, M. Mottakin, V. Selvanathan, Md. Shahiduzzaman, M.N.I. Khan, A.F.M.M. Rabbani, M.J. Rashid, M.A. Ibrahim, K. Sopian, K. Sobayel, Potential-induced performance degradation (PID) applied on a perovskite solar cell: exploring its effect on cell performance through numerical simulation. J. Electron. Mater. 52, 3205–3218 (2023). https://doi.org/10.1007/s11664-023-10284-2

    Article  CAS  Google Scholar 

  20. W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S. Seok, Il: iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 1979(356), 1376–1379 (2017). https://doi.org/10.1126/science.aan2301

    Article  CAS  Google Scholar 

  21. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. (2016). https://doi.org/10.1126/sciadv.1501170

    Article  PubMed  PubMed Central  Google Scholar 

  22. R. Prasanna, A. Gold-Parker, T. Leijtens, B. Conings, A. Babayigit, H.-G. Boyen, M.F. Toney, M.D. McGehee, Band gap tuning via lattice contraction and octahedral tilting in perovskite materials for photovoltaics. J. Am. Chem. Soc. 139, 11117–11124 (2017). https://doi.org/10.1021/jacs.7b04981

    Article  CAS  PubMed  Google Scholar 

  23. M. Akhtaruzzaman, M.I. Hossain, M.A. Islam, M. Shahiduzzaman, G. Muhammad, A.K. Mahmud Hasan, Y.H. Tsang, K. Sopian, Nanophotonic-structured front contact for high-performance perovskite solar cells. Sci. China Mater. 65, 1727–1740 (2022). https://doi.org/10.1007/s40843-021-1973-y

    Article  CAS  Google Scholar 

  24. K. Liu, S. Rafique, S.F. Musolino, Z. Cai, F. Liu, X. Li, Y. Yuan, Q. Bao, Y. Yang, J. Chu, X. Peng, C. Nie, W. Yuan, S. Zhang, J. Wang, Y. Pan, H. Zhang, X. Cai, Z. Shi, C. Li, H. Wang, L. Deng, T. Hu, Y. Wang, Y. Wang, S. Chen, L. Shi, P. Ayala, J.E. Wulff, A. Yu, Y. Zhan, Covalent bonding strategy to enable non-volatile organic cation perovskite for highly stable and efficient solar cells. Joule. 7, 1033–1050 (2023). https://doi.org/10.1016/j.joule.2023.03.019

    Article  CAS  Google Scholar 

  25. W.-C. Chang, D.-H. Lan, K.-M. Lee, X.-F. Wang, C.-L. Liu, Controlled deposition and performance optimization of perovskite solar cells using ultrasonic spray-coating of photoactive layers. Chemsuschem 10, 1405–1412 (2017). https://doi.org/10.1002/cssc.201601711

    Article  CAS  PubMed  Google Scholar 

  26. L. Huang, X. Sun, C. Li, J. Xu, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu, J. Zhang, UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Appl. Mater. Interfaces 9, 21909–21920 (2017). https://doi.org/10.1021/acsami.7b04392

    Article  CAS  PubMed  Google Scholar 

  27. T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford, A. Gold-Parker, E.J. Wolf, S.A. Swifter, C.C. Boyd, H.-P. Wang, M.F. Toney, S.F. Bent, M.D. McGehee, Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels 2, 2450–2459 (2018). https://doi.org/10.1039/C8SE00314A

    Article  CAS  Google Scholar 

  28. J.R. Poindexter, R.L.Z. Hoye, L. Nienhaus, R.C. Kurchin, A.E. Morishige, E.E. Looney, A. Osherov, J.-P. Correa-Baena, B. Lai, V. Bulović, V. Stevanović, M.G. Bawendi, T. Buonassisi, High tolerance to iron contamination in lead halide perovskite solar cells. ACS Nano 11, 7101–7109 (2017). https://doi.org/10.1021/acsnano.7b02734

    Article  CAS  PubMed  Google Scholar 

  29. S. He, L. Qiu, L.K. Ono, Y. Qi, How far are we from attaining 10-year lifetime for metal halide perovskite solar cells? Mater. Sci. Eng. R. Rep. 140, 100545 (2020). https://doi.org/10.1016/j.mser.2020.100545

    Article  Google Scholar 

  30. S. Akin, Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000 h. ACS Appl. Mater. Interfaces 11, 39998–40005 (2019). https://doi.org/10.1021/acsami.9b13876

    Article  CAS  PubMed  Google Scholar 

  31. I. Hamideddine, N. Tahiri, O.E. Bounagui, H. Ez-Zahraouy, Ab initio study of structural and optical properties of the halide perovskite KBX3 compound. J. Korean Ceram. Soc. 59, 350–358 (2022). https://doi.org/10.1007/s43207-021-00178-6

    Article  CAS  Google Scholar 

  32. A.K. Mahmud Hasan, M.S. Jamal, N. Kamaruddin, N. Asim, K. Sopian, M.D. Akhtaruzzaman, O. Raed, Integration of NiO layer as hole transport material in perovskite solar cells, in 2019 6th International Conference on Space Science and Communication (IconSpace) (IEEE, 2019). pp. 267–270

  33. B. Akenoun, S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, A. Benyoussef, The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound. J. Korean Ceram. Soc. 59, 715–728 (2022). https://doi.org/10.1007/s43207-022-00212-1

    Article  CAS  Google Scholar 

  34. L.M. Shaker, A. Alamiery, W.N.R.W. Isahak, W.K. Al-Azzawi, Corrosion in solar cells: challenges and solutions for enhanced performance and durability. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01277-9

    Article  Google Scholar 

  35. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. H. Shen, D. Walter, Y. Wu, K.C. Fong, D.A. Jacobs, T. Duong, J. Peng, K. Weber, T.P. White, K.R. Catchpole, Monolithic perovskite/si tandem solar cells: pathways to over 30% efficiency. Adv. Energy Mater. (2020). https://doi.org/10.1002/aenm.201902840

    Article  Google Scholar 

  37. C. Ballif, F.-J. Haug, M. Boccard, P.J. Verlinden, G. Hahn, Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022). https://doi.org/10.1038/s41578-022-00423-2

    Article  Google Scholar 

  38. P. Kung, M. Li, P. Lin, Y. Chiang, C. Chan, T. Guo, P. Chen, A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 5, 1800882 (2018). https://doi.org/10.1002/admi.201800882

    Article  CAS  Google Scholar 

  39. N.A.N. Ouedraogo, G.O. Odunmbaku, Y. Ouyang, X. Xiong, B. Guo, S. Chen, S. Lu, K. Sun, Eco-friendly processing of perovskite solar cells in ambient air. Renew. Sustain. Energy Rev. 192, 114161 (2024). https://doi.org/10.1016/j.rser.2023.114161

    Article  CAS  Google Scholar 

  40. Y. Zhang, L. Xu, Y. Wu, H. Zhang, F. Zeng, J. Xing, B. Liu, Y. Qi, B. Dong, X. Bai, H. Song, Synergetic excess PbI2 and reduced Pb leakage management strategy for 24.28% efficient, stable and eco-friendly perovskite solar cells. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202214102

    Article  PubMed  Google Scholar 

  41. S.F. Ahmed, N. Islam, P.S. Kumar, A.T. Hoang, M. Mofijur, A. Inayat, G.M. Shafiullah, D.-V.N. Vo, I.A. Badruddin, S. Kamangar, Perovskite solar cells: thermal and chemical stability improvement, and economic analysis. Mater Today Chem. 27, 101284 (2023). https://doi.org/10.1016/j.mtchem.2022.101284

    Article  CAS  Google Scholar 

  42. B. Xiao, Y. Qian, X. Li, Y. Tao, Z. Yi, Q. Jiang, Y. Luo, J. Yang, Enhancing the stability of planar perovskite solar cells by green and inexpensive cellulose acetate butyrate. J. Energy Chem. 76, 259–265 (2023). https://doi.org/10.1016/j.jechem.2022.09.039

    Article  CAS  Google Scholar 

  43. Q.-Q. Chu, Z. Sun, D. Wang, B. Cheng, H. Wang, C.-P. Wong, B. Fang, Encapsulation: the path to commercialization of stable perovskite solar cells. Matter. 6, 3838–3863 (2023). https://doi.org/10.1016/j.matt.2023.08.016

    Article  CAS  Google Scholar 

  44. L. Ye, P. Guo, J. Su, K. Zhang, C. Liu, P. Yang, W. Zhao, P. Zhao, Z. Liu, J. Chang, Q. Ye, H. Wang, Managing secondary phase lead iodide in hybrid perovskites via surface reconstruction for high-performance perovskite solar cells with robust environmental stability. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202300678

    Article  Google Scholar 

  45. B. Liu, X. Ren, R. Li, Y. Chen, D. He, Y. Li, Q. Zhou, D. Ma, X. Han, X. Shai, K. Yang, S. Lu, Z. Zhang, J. Feng, C. Chen, J. Yi, J. Chen, Stabilizing top interface by molecular locking strategy with polydentate chelating biomaterials toward efficient and stable perovskite solar cells in ambient air. Adv. Mater. (2024). https://doi.org/10.1002/adma.202312679

    Article  PubMed  Google Scholar 

  46. N. Srisamran, J. Sudchanham, C. Sriprachuabwong, K. Srisawad, P. Pakawatpanurut, K. Lohawet, P. Kumnorkaew, T. Krajangsang, A. Tuantranont, Enhanced performance and stability of fully printed perovskite solar cells and modules by ternary additives under high humidity. Energy Fuels 37, 6049–6061 (2023). https://doi.org/10.1021/acs.energyfuels.2c03641

    Article  CAS  Google Scholar 

  47. J. Li, J. Duan, Q. Guo, Z. Qi, X. Duan, H. Li, S. Geng, N. Liu, B. He, P. Yang, Q. Tang, Accelerating thermal transfer in perovskite films for high-efficiency and stable photovoltaics. Adv. Funct. Mater. (2023). https://doi.org/10.1002/adfm.202308036

    Article  PubMed  PubMed Central  Google Scholar 

  48. P. Xie, H. Xiao, Y. Qiao, G. Qu, J. Chen, X. Liu, Z.-X. Xu, Radical reinforced defect passivation strategy for efficient and stable MAPbI3 perovskite solar cells fabricated in air using a green anti-solvent process. Chem. Eng. J. 462, 142328 (2023). https://doi.org/10.1016/j.cej.2023.142328

    Article  CAS  Google Scholar 

  49. B. Liu, D. He, Q. Zhou, Y. Chen, P. He, X. Han, D. Ma, Y. He, Y. Li, P. Zhao, Z.-X. Xu, S. Lu, Z. Zang, J. Chen, 1-Adamantanamine hydrochloride resists environmental corrosion to obtain highly efficient and stable perovskite solar cells. J. Phys. Chem. Lett. 14, 2501–2508 (2023). https://doi.org/10.1021/acs.jpclett.3c00298

    Article  CAS  PubMed  Google Scholar 

  50. V. Ozkaya, F. Sadegh, M. Unal, B. Alkan, M. Ebic, T. Ozturk, M. Yilmaz, S. Akin, Eco-friendly boost for perovskite photovoltaics: harnessing cellulose-modified SnO2 as a high-performance electron transporting material. ACS Appl. Mater. Interfaces (2023). https://doi.org/10.1021/acsami.3c12698

    Article  PubMed  Google Scholar 

  51. D.K. Sarkar, M. Mottakin, A.K.M. Hasan, M.A. Islam, M.M. Haque, V. Selvanathan, M. Aminuzzaman, A.M. Alanazi, M. Akhtaruzzaman, Numerical investigation of Aloe Vera-mediated green synthesized CuAlO2 as HTL in Pb-free perovskite solar cells. J. Taibah Univ. Sci. (2024). https://doi.org/10.1080/16583655.2023.2300856

    Article  Google Scholar 

  52. T. Li, Q. Xiong, C. Hu, C. Wang, N. Zhang, S.-Y. Lien, P. Gao, Improving crystallization and stability of perovskite solar cells using a low-temperature treated A-site cation solution in the sequential deposition. Molecules 28, 4103 (2023). https://doi.org/10.3390/molecules28104103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. N. Kwon, J. Lee, M.J. Ko, Y.Y. Kim, J. Seo, Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells. Nano Converg. 10, 28 (2023). https://doi.org/10.1186/s40580-023-00375-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. P.A.M. Mercy, K.S.J. Wilson, Development of environmental friendly high performance Cs2TiBr 6 based perovskite solar cell using numerical simulation. Appl. Surf. Sci. Adv. 15, 100394 (2023). https://doi.org/10.1016/j.apsadv.2023.100394

    Article  Google Scholar 

  55. N.F. Ramli, P.N.A. Fahsyar, N.A. Ludin, M.A.M. Teridi, M.A. Ibrahim, S. Sepeai, Graphene dispersion as a passivation layer for the enhancement of perovskite solar cell stability. Mater. Chem. Phys. 257, 123798 (2021). https://doi.org/10.1016/j.matchemphys.2020.123798

    Article  CAS  Google Scholar 

  56. A.K. Mahmud Hasan, I. Raifuku, N. Amin, Y. Ishikawa, D.K. Sarkar, K. Sobayel, M.R. Karim, A. Ul-Hamid, H. Abdullah, M. Shahiduzzaman, Y. Uraoka, K. Sopian, M. Akhtaruzzaman, Air-stable perovskite photovoltaic cells with low temperature deposited NiOx as an efficient hole-transporting material. Opt. Mater. Express 10, 1801 (2020). https://doi.org/10.1364/OME.391321

    Article  Google Scholar 

  57. M.F. Mohamad Noh, N.A. Arzaee, I.N. Nawas Mumthas, N.A. Mohamed, S.N.F. Mohd Nasir, J. Safaei, A.R.B.M. Yusoff, M.K. Nazeeruddin, M.A. Mat Teridi, High-humidity processed perovskite solar cells. J. Mater. Chem. A Mater. 8, 10481–10518 (2020). https://doi.org/10.1039/D0TA01178A

    Article  CAS  Google Scholar 

  58. M.F.M. Noh, N.A. Arzaee, M.A.M. Teridi, Effect of oxygen vacancies in electron transport layer for perovskite solar cells, in Solar Cells (Springer, Cham, 2020), pp. 283–305

  59. Y. Chen, Q. Wang, W. Tang, W. Qiu, Y. Wu, Q. Peng, Heterocyclic amino acid molecule as a multifunctional interfacial bridge for improving the efficiency and stability of quadruple cation perovskite solar cells. Nano Energy 107, 108154 (2023). https://doi.org/10.1016/j.nanoen.2022.108154

    Article  CAS  Google Scholar 

  60. J. Wang, Y. Che, Y. Duan, Z. Liu, S. Yang, D. Xu, Z. Fang, X. Lei, Y. Li, S. Liu, (Frank): 21.15%-efficiency and stable γ-CsPbI3 perovskite solar cells enabled by an acyloin ligand. Adv. Mater. (2023). https://doi.org/10.1002/adma.202210223

    Article  PubMed  PubMed Central  Google Scholar 

  61. N.T.P. Hartono, H. Köbler, P. Graniero, M. Khenkin, R. Schlatmann, C. Ulbrich, A. Abate, Stability follows efficiency based on the analysis of a large perovskite solar cells ageing dataset. Nat. Commun. 14, 4869 (2023). https://doi.org/10.1038/s41467-023-40585-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Q. Cai, Y. Yao, Y. Lu, M. Wang, Y. Zhang, D. Song, Z. Xu, X. Li, D. Wei, Stable perovskite solar cells with 22% efficiency enabled by inhibiting migration/loss of iodide ions. Phys. Chem. Chem. Phys. 25, 6955–6962 (2023). https://doi.org/10.1039/D2CP04422F

    Article  CAS  PubMed  Google Scholar 

  63. C. Zhang, H. Li, C. Gong, Q. Zhuang, J. Chen, Z. Zang, Crystallization manipulation and holistic defect passivation toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 16, 3825–3836 (2023). https://doi.org/10.1039/D3EE00413A

    Article  Google Scholar 

  64. M. Karimipour, A. Paingott Parambil, K. Tabah Tanko, T. Zhang, F. Gao, M. Lira-Cantu, Functionalized MXene/halide perovskite heterojunctions for perovskite solar cells stable under real outdoor conditions. Adv. Energy Mater. (2023). https://doi.org/10.1002/aenm.202301959

    Article  Google Scholar 

  65. K.K. Bass, R.E. McAnally, S. Zhou, P.I. Djurovich, M.E. Thompson, B.C. Melot, Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chem. Commun. 50, 15819–15822 (2014). https://doi.org/10.1039/C4CC05231E

    Article  CAS  Google Scholar 

  66. C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336

    Article  CAS  PubMed  Google Scholar 

  67. Q. Tai, K.-C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ. Sci. 12, 2375–2405 (2019). https://doi.org/10.1039/C9EE01479A

    Article  CAS  Google Scholar 

  68. H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee, J. Kim, M.J. Paik, Y.K. Kim, K.S. Kim, M.G. Kim, T.J. Shin, S. Il Seok, Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8

    Article  CAS  PubMed  Google Scholar 

  69. A. Bhat, B. Dhamaniya, P. Chhillar, T. Korukonda, G. Rawat, S. Pathak, Analysing the prospects of perovskite solar cells within the purview of recent scientific advancements. Crystals (Basel) 8, 242 (2018). https://doi.org/10.3390/cryst8060242

    Article  CAS  Google Scholar 

  70. T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, G. Schileo, K.B. Mustapha, R. Greenough, Perovskite solar cells: an integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renew. Sustain. Energy Rev. 80, 1321–1344 (2017). https://doi.org/10.1016/j.rser.2017.05.095

    Article  CAS  Google Scholar 

  71. G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017). https://doi.org/10.1038/ncomms15684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. X. Qin, Z. Zhao, Y. Wang, J. Wu, Q. Jiang, J. You, Recent progress in stability of perovskite solar cells. J. Semicond. 38, 011002 (2017). https://doi.org/10.1088/1674-4926/38/1/011002

    Article  CAS  Google Scholar 

  73. Y. Rong, Y. Hu, A. Mei, H. Tan, M.I. Saidaminov, SIl. Seok, M.D. McGehee, E.H. Sargent, H. Han, Challenges for commercializing perovskite solar cells. Science (1979) (2018). https://doi.org/10.1126/science.aat8235

    Article  Google Scholar 

  74. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014). https://doi.org/10.1038/nphoton.2014.134

    Article  CAS  Google Scholar 

  75. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53, 2812–2824 (2014). https://doi.org/10.1002/anie.201308719

    Article  CAS  Google Scholar 

  76. S.A. Bretschneider, J. Weickert, J.A. Dorman, L. Schmidt-Mende, Research update: physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Mater. 2, 040701 (2014). https://doi.org/10.1063/1.4871795

    Article  CAS  Google Scholar 

  77. D.B. Mitzi, Synthesis, structure, and properties of organic–inorganic perovskites and related materials, in Presented at the March 9 (2007)

  78. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. Jesper Jacobsson, M. Grätzel, A. Hagfeldt, The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710–727 (2017). https://doi.org/10.1039/C6EE03397K

    Article  CAS  Google Scholar 

  79. X. Jiang, Z. Yu, J. Lai, Y. Zhang, N. Lei, D. Wang, L. Sun, Efficient perovskite solar cells employing a solution-processable copper phthalocyanine as a hole-transporting material. Sci. China Chem. 60, 423–430 (2017). https://doi.org/10.1007/s11426-016-0393-5

    Article  CAS  Google Scholar 

  80. M. Shahinuzzaman, S. Afroz, H. Mohafez, M. Jamal, M. Khandaker, A. Sulieman, N. Tamam, M. Islam, Roles of inorganic oxide based HTMs towards highly efficient and long-term stable PSC—a review. Nanomaterials 12, 3003 (2022). https://doi.org/10.3390/nano12173003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. L. Tzounis, T. Stergiopoulos, A. Zachariadis, C. Gravalidis, A. Laskarakis, S. Logothetidis, Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: optical and morphological studies. Mater Today Proc. 4, 5082–5089 (2017). https://doi.org/10.1016/j.matpr.2017.04.117

    Article  Google Scholar 

  82. M.Á. Reinoso, C.A. Otálora, G. Gordillo, Improvement properties of hybrid halide perovskite thin films prepared by sequential evaporation for planar solar cells. Materials 12, 1394 (2019). https://doi.org/10.3390/ma12091394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. F. Guo, W. He, S. Qiu, C. Wang, X. Liu, K. Forberich, C.J. Brabec, Y. Mai, Sequential deposition of high-quality photovoltaic perovskite layers via scalable printing methods. Adv. Funct. Mater. 29, 1900964 (2019). https://doi.org/10.1002/adfm.201900964

    Article  CAS  Google Scholar 

  84. M. Jung, S.-G. Ji, G. Kim, S. Seok, Il: Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48, 2011–2038 (2019). https://doi.org/10.1039/C8CS00656C

    Article  CAS  PubMed  Google Scholar 

  85. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  86. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 1979(338), 643–647 (2012). https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  87. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137, 6730–6733 (2015). https://doi.org/10.1021/jacs.5b01994

    Article  CAS  PubMed  Google Scholar 

  88. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, Md.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3 NH3 PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). https://doi.org/10.1021/ja307789s

    Article  CAS  PubMed  Google Scholar 

  89. K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  90. L. Meng, J. You, T.-F. Guo, Y. Yang, Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155–165 (2016). https://doi.org/10.1021/acs.accounts.5b00404

    Article  CAS  PubMed  Google Scholar 

  91. R. Fan, Y. Huang, L. Wang, L. Li, G. Zheng, H. Zhou, The progress of interface design in perovskite-based solar cells. Adv. Energy Mater. 6, 1600460 (2016). https://doi.org/10.1002/aenm.201600460

    Article  CAS  Google Scholar 

  92. H.S. Jung, N.-G. Park, Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015). https://doi.org/10.1002/smll.201402767

    Article  CAS  PubMed  Google Scholar 

  93. J. Chen, N.-G. Park, Inorganic hole transporting materials for stable and high efficiency perovskite solar cells. J. Phys. Chem. C 122, 14039–14063 (2018). https://doi.org/10.1021/acs.jpcc.8b01177

    Article  CAS  Google Scholar 

  94. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014). https://doi.org/10.1021/nl404454h

    Article  CAS  PubMed  Google Scholar 

  95. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, S.A. Haque, Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9, 1655–1660 (2016). https://doi.org/10.1039/C6EE00409A

    Article  CAS  Google Scholar 

  96. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV–light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016). https://doi.org/10.1039/C5EE03522H

    Article  CAS  Google Scholar 

  98. F.T.F. O’Mahony, Y.H. Lee, C. Jellett, S. Dmitrov, D.T.J. Bryant, J.R. Durrant, B.C. O’Regan, M. Graetzel, M.K. Nazeeruddin, S.A. Haque, Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. J. Mater. Chem. A Mater. 3, 7219–7223 (2015). https://doi.org/10.1039/C5TA01221J

    Article  Google Scholar 

  99. N. Chander, A.F. Khan, P.S. Chandrasekhar, E. Thouti, S.K. Swami, V. Dutta, V.K. Komarala, Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO 4: Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells. Appl. Phys. Lett. 105, 033904 (2014). https://doi.org/10.1063/1.4891181

    Article  CAS  Google Scholar 

  100. X. Zhao, N.-G. Park, Stability issues on perovskite solar cells. Photonics. 2, 1139–1151 (2015). https://doi.org/10.3390/photonics2041139

    Article  CAS  Google Scholar 

  101. J. Wang, Y. Chen, M. Liang, G. Ge, R. Zhou, Z. Sun, S. Xue, A new thermal-stable truxene-based hole-transporting material for perovskite solar cells. Dyes Pigm. 125, 399–406 (2016). https://doi.org/10.1016/j.dyepig.2015.11.004

    Article  CAS  Google Scholar 

  102. B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M.J. Johansson, H. Rensmo, Chemical and electronic structure characterization of lead halide perovskites and stability behavior under different exposures—a photoelectron spectroscopy investigation. Chem. Mater. 27, 1720–1731 (2015). https://doi.org/10.1021/acs.chemmater.5b00348

    Article  CAS  Google Scholar 

  103. A.B. Djurišić, F. Liu, A.M.C. Ng, Q. Dong, M.K. Wong, A. Ng, C. Surya, Stability issues of the next generation solar cells. Phys. Status Solidi (RRL) Rapid Res. Lett. 10, 281–299 (2016). https://doi.org/10.1002/pssr.201600012

    Article  CAS  Google Scholar 

  104. M. Zhang, H. Yu, M. Lyu, Q. Wang, J.-H. Yun, L. Wang, Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3–xClx films. Chem. Commun. 50, 11727–11730 (2014). https://doi.org/10.1039/C4CC04973J

    Article  CAS  Google Scholar 

  105. L. Badia, E. Mas-Marzá, R.S. Sánchez, E.M. Barea, J. Bisquert, I. Mora-Seró, New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability. APL Mater. 2, 081507 (2014). https://doi.org/10.1063/1.4890545

    Article  CAS  Google Scholar 

  106. Y.S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, T. Park, A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite. Energy Environ. Sci. 7, 1454 (2014). https://doi.org/10.1039/c3ee44174a

    Article  CAS  Google Scholar 

  107. E.L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumüller, M.G. Christoforo, M.D. McGehee, Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014). https://doi.org/10.1039/C4EE02465F

    Article  CAS  Google Scholar 

  108. I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330–17336 (2015). https://doi.org/10.1021/acsami.5b04490

    Article  CAS  PubMed  Google Scholar 

  109. W.H. Nguyen, C.D. Bailie, E.L. Unger, M.D. McGehee, Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI) 2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 136, 10996–11001 (2014). https://doi.org/10.1021/ja504539w

    Article  CAS  PubMed  Google Scholar 

  110. D. Wang, M. Wright, N.K. Elumalai, A. Uddin, Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255–275 (2016). https://doi.org/10.1016/j.solmat.2015.12.025

    Article  CAS  Google Scholar 

  111. F. Machui, M. Hösel, N. Li, G.D. Spyropoulos, T. Ameri, R.R. Søndergaard, M. Jørgensen, A. Scheel, D. Gaiser, K. Kreul, D. Lenssen, M. Legros, N. Lemaitre, M. Vilkman, M. Välimäki, S. Nordman, C.J. Brabec, F.C. Krebs, Cost analysis of roll-to-roll fabricated ITO free single and tandem organic solar modules based on data from manufacture. Energy Environ. Sci. 7, 2792 (2014). https://doi.org/10.1039/C4EE01222D

    Article  CAS  Google Scholar 

  112. A. Rivaton, S. Chambon, M. Manceau, J.-L. Gardette, N. Lemaître, S. Guillerez, Light-induced degradation of the active layer of polymer-based solar cells. Polym. Degrad. Stab. 95, 278–284 (2010). https://doi.org/10.1016/j.polymdegradstab.2009.11.021

    Article  CAS  Google Scholar 

  113. T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014). https://doi.org/10.1021/jp411112k

    Article  CAS  Google Scholar 

  114. J. Yin, J. Cao, X. He, S. Yuan, S. Sun, J. Li, N. Zheng, L. Lin, Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer. J. Mater. Chem. A Mater. 3, 16860–16866 (2015). https://doi.org/10.1039/C5TA02843D

    Article  CAS  Google Scholar 

  115. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466

    Article  CAS  Google Scholar 

  116. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buechelers, A.N. Tiwari, Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules, in 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 (IEEE, 2012), pp. 1–9

  117. D. Yu, Y.-Q. Yang, Z. Chen, Y. Tao, Y.-F. Liu, Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43–49 (2016). https://doi.org/10.1016/j.optcom.2015.08.021

    Article  CAS  Google Scholar 

  118. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013). https://doi.org/10.1038/ncomms3885

    Article  CAS  PubMed  Google Scholar 

  119. K.A. Bush, A.F. Palmstrom, Z.J. Yu, M. Boccard, R. Cheacharoen, J.P. Mailoa, D.P. McMeekin, R.L.Z. Hoye, C.D. Bailie, T. Leijtens, I.M. Peters, M.C. Minichetti, N. Rolston, R. Prasanna, S. Sofia, D. Harwood, W. Ma, F. Moghadam, H.J. Snaith, T. Buonassisi, Z.C. Holman, S.F. Bent, M.D. McGehee, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9

    Article  CAS  Google Scholar 

  120. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 1979(345), 295–298 (2014). https://doi.org/10.1126/science.1254763

    Article  CAS  Google Scholar 

  121. Z. Wang, Q. Lin, B. Wenger, M.G. Christoforo, Y.-H. Lin, M.T. Klug, M.B. Johnston, L.M. Herz, H.J. Snaith, High irradiance performance of metal halide perovskites for concentrator photovoltaics. Nat. Energy 3, 855–861 (2018). https://doi.org/10.1038/s41560-018-0220-2

    Article  CAS  Google Scholar 

  122. S. Seo, S. Jeong, C. Bae, N.-G. Park, H. Shin, Perovskite solar cells with inorganic electron- and hole-transport layers exhibiting long-term (≈ 500 h) stability at 85 °C under continuous 1 sun illumination in ambient air. Adv. Mater. 30, 1801010 (2018). https://doi.org/10.1002/adma.201801010

    Article  CAS  Google Scholar 

  123. K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.-W. Wang, C.-Z. Li, A.K.-Y. Jen, T.-L. Lee, H.J. Snaith, C 60 as an efficient n-type compact layer in perovskite solar cells. J. Phys. Chem. Lett. 6, 2399–2405 (2015). https://doi.org/10.1021/acs.jpclett.5b00902

    Article  CAS  PubMed  Google Scholar 

  124. T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015). https://doi.org/10.1002/aenm.201500963

    Article  CAS  Google Scholar 

  125. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340

    Article  CAS  PubMed  Google Scholar 

  126. H. Tsai, W. Nie, J.-C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, A.D. Mohite, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016). https://doi.org/10.1038/nature18306

    Article  CAS  PubMed  Google Scholar 

  127. Q. Sun, C. Shen, D. Wang, T. Zhang, H. Ban, Y. Shen, Z. Zhang, X.-L. Zhang, G. Yang, M. Wang, Efficient and stable large-area perovskite solar cells with inorganic perovskite/carbon quantum dot-graded heterojunction. Research (2021). https://doi.org/10.34133/2021/9845067

    Article  PubMed  PubMed Central  Google Scholar 

  128. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, Z. Zhou, T. Noda, L. Han, Thermally stable MAPbI 3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29, 1701073 (2017). https://doi.org/10.1002/adma.201701073

    Article  CAS  Google Scholar 

  129. E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015). https://doi.org/10.1039/C4SC03141E

    Article  CAS  PubMed  Google Scholar 

  130. H. Tsai, R. Asadpour, J.-C. Blancon, C.C. Stoumpos, O. Durand, J.W. Strzalka, B. Chen, R. Verduzco, P.M. Ajayan, S. Tretiak, J. Even, M.A. Alam, M.G. Kanatzidis, W. Nie, A.D. Mohite, Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 1979(360), 67–70 (2018). https://doi.org/10.1126/science.aap8671

    Article  CAS  Google Scholar 

  131. D.W. deQuilettes, W. Zhang, V.M. Burlakov, D.J. Graham, T. Leijtens, A. Osherov, V. Bulović, H.J. Snaith, D.S. Ginger, S.D. Stranks, Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 11683 (2016). https://doi.org/10.1038/ncomms11683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. F.-J. Haug, D. Rudmann, H. Zogg, A.N. Tiwari, Light soaking effects in Cu(In, Ga)Se2 superstrate solar cells. Thin Solid Films 431–432, 431–435 (2003). https://doi.org/10.1016/S0040-6090(03)00187-1

    Article  CAS  Google Scholar 

  133. J.-F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, H.-W. Schock, Stability issues of Cu(In, Ga)Se2-based solar cells. J. Phys. Chem. B 104, 4849–4862 (2000). https://doi.org/10.1021/jp993143k

    Article  CAS  Google Scholar 

  134. W. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J. Fan, A.A. Haghighirad, M.B. Johnston, L. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9, 490–498 (2016). https://doi.org/10.1039/C5EE03522H

    Article  CAS  Google Scholar 

  135. X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, Y. Wang, N. Yuan, J. Ding, Method for improving illumination instability of organic–inorganic halide perovskite solar cells. Sci. Bull. (Beijing). 61, 236–244 (2016). https://doi.org/10.1007/s11434-016-0994-1

    Article  CAS  Google Scholar 

  136. M. Piralaee, A. Asgari, Nitride/perovskite tandem solar cell with high stability: analytical study of adjusting current matching condition. Int. J. Energy Res. 2023, 1–12 (2023). https://doi.org/10.1155/2023/2925434

    Article  CAS  Google Scholar 

  137. M. Koehl, M. Heck, S. Wiesmeier, J. Wirth, Modeling of the nominal operating cell temperature based on outdoor weathering. Sol. Energy Mater. Sol. Cells 95, 1638–1646 (2011). https://doi.org/10.1016/j.solmat.2011.01.020

    Article  CAS  Google Scholar 

  138. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. (2015). https://doi.org/10.1002/aenm.201500477

    Article  Google Scholar 

  139. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022

    Article  CAS  Google Scholar 

  140. A. Ciccioli, A. Latini, Thermodynamics and the intrinsic stability of lead halide perovskites CH3 NH3 PbX3. J. Phys. Chem. Lett. 9, 3756–3765 (2018). https://doi.org/10.1021/acs.jpclett.8b00463

    Article  CAS  PubMed  Google Scholar 

  141. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8, 4730–4739 (2014). https://doi.org/10.1021/nn500526t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A.S. Subbiah, J. Liu, G.T. Harrison, M.I. Nugraha, M.K. Eswaran, M. Babics, Y. Chen, F. Xu, T.G. Allen, A.U. Rehman, C.-L. Wang, T.D. Anthopoulos, U. Schwingenschlögl, M. De Bastiani, E. Aydin, S. De Wolf, Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 1979(376), 73–77 (2022). https://doi.org/10.1126/science.abm5784

    Article  CAS  Google Scholar 

  143. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Elsevier, London, 2012)

    Google Scholar 

  144. L. Zhao, R.A. Kerner, Z. Xiao, Y.L. Lin, K.M. Lee, J. Schwartz, B.P. Rand, Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016). https://doi.org/10.1021/acsenergylett.6b00320

    Article  CAS  Google Scholar 

  145. N.N. Shlenskaya, N.A. Belich, M. Grätzel, E.A. Goodilin, A.B. Tarasov, Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells. J. Mater. Chem. A Mater. 6, 1780–1786 (2018). https://doi.org/10.1039/C7TA10217H

    Article  CAS  Google Scholar 

  146. P. Pistor, A. Ruiz, A. Cabot, V. Izquierdo-Roca, Advanced raman spectroscopy of methylammonium lead iodide: development of a non-destructive characterisation methodology. Sci. Rep. 6, 35973 (2016). https://doi.org/10.1038/srep35973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. K. Mahmood, S. Sarwar, M.T. Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv. 7, 17044–17062 (2017). https://doi.org/10.1039/C7RA00002B

    Article  CAS  Google Scholar 

  148. T. Kim, J. Lim, S. Song, Recent Progress and Challenges of Electron Transport Layers in Organic-Inorganic Perovskite Solar Cells. Energies (Basel). 13, 5572 (2020). https://doi.org/10.3390/en13215572

    Article  CAS  Google Scholar 

  149. S. Nair, J.V. Gohel, A review on contemporary hole transport materials for perovskite solar cells, in Presented at the (2020)

  150. K. Hwang, Y.-S. Jung, Y.-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D.-Y. Kim, D. Vak, Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247 (2015). https://doi.org/10.1002/adma.201404598

    Article  CAS  PubMed  Google Scholar 

  151. S.-G. Li, K.-J. Jiang, M.-J. Su, X.-P. Cui, J.-H. Huang, Q.-Q. Zhang, X.-Q. Zhou, L.-M. Yang, Y.-L. Song, Inkjet printing of CH3 NH3 PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A Mater. 3, 9092–9097 (2015). https://doi.org/10.1039/C4TA05675B

    Article  CAS  Google Scholar 

  152. T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, F.C. Krebs, Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015). https://doi.org/10.1002/aenm.201500569

    Article  CAS  Google Scholar 

  153. Z. Liu, M. Zhang, X. Xu, L. Bu, W. Zhang, W. Li, Z. Zhao, M. Wang, Y.-B. Cheng, H. He, p-type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967–3973 (2015). https://doi.org/10.1039/C4DT02904F

    Article  CAS  PubMed  Google Scholar 

  154. F. Di Giacomo, V. Zardetto, A. D’Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W.M.M. Kessels, M. Creatore, T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5, 1401808 (2015). https://doi.org/10.1002/aenm.201401808

    Article  CAS  Google Scholar 

  155. S. Dharani, H.K. Mulmudi, N. Yantara, P.T. Thu Trang, N.G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews, P.P. Boix, High efficiency electrospun TiO2 nanofiber based hybrid organic–inorganic perovskite solar cell. Nanoscale 6, 1675–1679 (2014). https://doi.org/10.1039/C3NR04857H

    Article  CAS  PubMed  Google Scholar 

  156. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S. Seok, Il: chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013). https://doi.org/10.1021/nl400349b

    Article  CAS  PubMed  Google Scholar 

  157. H.J. Snaith, L. Schmidt-Mende, Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19, 3187–3200 (2007). https://doi.org/10.1002/adma.200602903

    Article  CAS  Google Scholar 

  158. K. Mahmood, B.S. Swain, H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 6, 9127 (2014). https://doi.org/10.1039/C4NR02065K

    Article  CAS  PubMed  Google Scholar 

  159. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739 (2013). https://doi.org/10.1039/c3ee40810h

    Article  CAS  Google Scholar 

  160. J.Y. Kim, The stability effect of atomic layer deposition (ALD) of Al2O3 on CH3NH3PbI3 perovskite solar cell fabricated by vapor deposition. Key Eng. Mater. 753, 156–162 (2017). https://doi.org/10.4028/www.scientific.net/KEM.753.156

    Article  Google Scholar 

  161. B.J. Kim, S. Lee, H.S. Jung, Recent progressive efforts in perovskite solar cells toward commercialization. J. Mater. Chem. A Mater. 6, 12215–12236 (2018). https://doi.org/10.1039/C8TA02159G

    Article  CAS  Google Scholar 

  162. L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells. Rep. Prog. Phys. 79, 026501 (2016). https://doi.org/10.1088/0034-4885/79/2/026501

    Article  CAS  PubMed  Google Scholar 

  163. Q. Qin, Z. Zhang, Y. Cai, Y. Zhou, H. Liu, X. Lu, X. Gao, L. Shui, S. Wu, J. Liu, Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives. J. Power. Sources 396, 49–56 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.091

    Article  CAS  Google Scholar 

  164. H. Dong, Z. Wu, J. Xi, X. Xu, L. Zuo, T. Lei, X. Zhao, L. Zhang, X. Hou, A.K.-Y. Jen, Pseudohalide-induced recrystallization engineering for CH3 NH3 PbI3 film and its application in highly efficient inverted planar heterojunction perovskite solar cells. Adv. Funct. Mater. 28, 1704836 (2018). https://doi.org/10.1002/adfm.201704836

    Article  CAS  Google Scholar 

  165. Z. Yu, L. Sun, Recent progress on hole-transporting materials for emerging organometal halide perovskite solar cells. Adv. Energy Mater. 5, 1500213 (2015). https://doi.org/10.1002/aenm.201500213

    Article  CAS  Google Scholar 

  166. F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang, L. Han, Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10, 1942–1949 (2017). https://doi.org/10.1039/C7EE01675A

    Article  CAS  Google Scholar 

  167. E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel, A. Hagfeldt, J.-P. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016). https://doi.org/10.1039/C6EE02390H

    Article  CAS  Google Scholar 

  168. D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G.F. Trindade, J.F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R.H. Friend, Q. Gong, H.J. Snaith, R. Zhu, Enhanced photovoltage for inverted planar heterojunction perovskite solar cells. Science 1979(360), 1442–1446 (2018). https://doi.org/10.1126/science.aap9282

    Article  CAS  Google Scholar 

  169. J.-Y. Seo, T. Matsui, J. Luo, J.-P. Correa-Baena, F. Giordano, M. Saliba, K. Schenk, A. Ummadisingu, K. Domanski, M. Hadadian, A. Hagfeldt, S.M. Zakeeruddin, U. Steiner, M. Grätzel, A. Abate, Ionic liquid control crystal growth to enhance planar perovskite solar cells efficiency. Adv. Energy Mater. 6, 1600767 (2016). https://doi.org/10.1002/aenm.201600767

    Article  CAS  Google Scholar 

  170. X. Crispin, F.L.E. Jakobsson, A. Crispin, P.C.M. Grim, P. Andersson, A.V. Volodin, C. Van Haesendonck, M. Van der Auweraer, W.R. Salaneck, M. Berggren, The origin of the high conductivity of poly (3,4-ethylenedioxythiophene)−poly (styrenesulfonate) (PEDOT−PSS) plastic electrodes. Chemi. Mater. 18, 4354–4360 (2006)

    Article  CAS  Google Scholar 

  171. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014). https://doi.org/10.1039/C3EE43161D

    Article  CAS  Google Scholar 

  172. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, CH3 NH3 PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727–3732 (2013). https://doi.org/10.1002/adma.201301327

    Article  CAS  PubMed  Google Scholar 

  173. Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z. Hong, Y. Yang, A dopant-free organic hole transport material for efficient planar heterojunction perovskite solar cells. J. Mater. Chem. A Mater. 3, 11940–11947 (2015). https://doi.org/10.1039/C5TA02502H

    Article  CAS  Google Scholar 

  174. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3 NH3 PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602–1608 (2015). https://doi.org/10.1039/C5EE00120J

    Article  CAS  Google Scholar 

  175. S. Shi, Y. Li, X. Li, H. Wang, Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Mater. Horiz. 2, 378–405 (2015). https://doi.org/10.1039/C4MH00236A

    Article  CAS  Google Scholar 

  176. Q. Wang, C.-C. Chueh, M. Eslamian, A.K.-Y. Jen, Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces 8, 32068–32076 (2016). https://doi.org/10.1021/acsami.6b11757

    Article  CAS  PubMed  Google Scholar 

  177. J. Huang, K.-X. Wang, J.-J. Chang, Y.-Y. Jiang, Q.-S. Xiao, Y. Li, Improving the efficiency and stability of inverted perovskite solar cells with dopamine-copolymerized PEDOT:PSS as a hole extraction layer. J. Mater. Chem. A Mater. 5, 13817–13822 (2017). https://doi.org/10.1039/C7TA02670F

    Article  CAS  Google Scholar 

  178. L. Hu, K. Sun, M. Wang, W. Chen, B. Yang, J. Fu, Z. Xiong, X. Li, X. Tang, Z. Zang, S. Zhang, L. Sun, M. Li, Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-Doped PEDOT:PSS. ACS Appl. Mater. Interfaces 9, 43902–43909 (2017). https://doi.org/10.1021/acsami.7b14592

    Article  CAS  PubMed  Google Scholar 

  179. C.-H. Chiang, Z.-L. Tseng, C.-G. Wu, Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. J. Mater. Chem. A. 2, 15897–15903 (2014). https://doi.org/10.1039/C4TA03674C

    Article  CAS  Google Scholar 

  180. S. Pang, D. Chen, C. Zhang, J. Chang, Z. Lin, H. Yang, X. Sun, J. Mo, H. Xi, G. Han, J. Zhang, Y. Hao, Efficient bifacial semitransparent perovskite solar cells with silver thin film electrode. Sol. Energy Mater. Sol. Cells 170, 278–286 (2017). https://doi.org/10.1016/j.solmat.2017.05.071

    Article  CAS  Google Scholar 

  181. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  182. J.W. Jung, C.-C. Chueh, A.K.-Y. Jen, A low-temperature, solution-processable, Cu-doped nickel oxide hole-transporting layer via the combustion method for high-performance thin-film perovskite solar cells. Adv. Mater. 27, 7874–7880 (2015). https://doi.org/10.1002/adma.201503298

    Article  CAS  PubMed  Google Scholar 

  183. N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 1979(358), 768–771 (2017). https://doi.org/10.1126/science.aam5655

    Article  CAS  Google Scholar 

  184. W. Sun, Y. Li, S. Ye, H. Rao, W. Yan, H. Peng, Y. Li, Z. Liu, S. Wang, Z. Chen, L. Xiao, Z. Bian, C. Huang, High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer. Nanoscale 8, 10806–10813 (2016). https://doi.org/10.1039/C6NR01927G

    Article  CAS  PubMed  Google Scholar 

  185. H. Zhang, H. Wang, W. Chen, A.K.-Y. Jen, CuGaO2: a promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells. Adv. Mater. 29, 1604984 (2017). https://doi.org/10.1002/adma.201604984

    Article  CAS  Google Scholar 

  186. F. Igbari, M. Li, Y. Hu, Z.-K. Wang, L.-S. Liao, A room-temperature CuAlO2 hole interfacial layer for efficient and stable planar perovskite solar cells. J. Mater. Chem. A Mater. 4, 1326–1335 (2016). https://doi.org/10.1039/C5TA07957H

    Article  CAS  Google Scholar 

  187. M. Huangfu, Y. Shen, G. Zhu, K. Xu, M. Cao, F. Gu, L. Wang, Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Appl. Surf. Sci. 357, 2234–2240 (2015). https://doi.org/10.1016/j.apsusc.2015.09.215

    Article  CAS  Google Scholar 

  188. H. Sung, N. Ahn, M.S. Jang, J.-K. Lee, H. Yoon, N.-G. Park, M. Choi, Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency. Adv. Energy Mater. 6, 1501873 (2016). https://doi.org/10.1002/aenm.201501873

    Article  CAS  Google Scholar 

  189. E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells. ACS Appl. Mater. Interfaces 9, 3223–3245 (2017). https://doi.org/10.1021/acsami.6b13582

    Article  CAS  PubMed  Google Scholar 

  190. H. Rao, W. Sun, S. Ye, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, C. Huang, Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 8, 7800–7805 (2016). https://doi.org/10.1021/acsami.5b12776

    Article  CAS  PubMed  Google Scholar 

  191. D. Yao, Interfacial and Compositional Engineering of Perovskite Solar Cells for Enhanced Device Performance and Stability (Springer, London, 2020)

    Book  Google Scholar 

  192. A.A. Mamun, T.T. Ava, K. Zhang, H. Baumgart, G. Namkoong, New PCBM/carbon based electron transport layer for perovskite solar cells. Phys. Chem. Chem. Phys. 19, 17960–17966 (2017). https://doi.org/10.1039/C7CP02523H

    Article  CAS  PubMed  Google Scholar 

  193. K. Aitola, K. Sveinbjörnsson, J.-P. Correa-Baena, A. Kaskela, A. Abate, Y. Tian, E.M.J. Johansson, M. Grätzel, E.I. Kauppinen, A. Hagfeldt, G. Boschloo, Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ. Sci. 9, 461–466 (2016). https://doi.org/10.1039/C5EE03394B

    Article  CAS  Google Scholar 

  194. J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan, N. Zheng, Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 137, 10914–10917 (2015). https://doi.org/10.1021/jacs.5b06493

    Article  CAS  PubMed  Google Scholar 

  195. R. Singh, H.K. Jun, A.K. Arof, Activated carbon as back contact for HTM-free mixed cation perovskite solar cell. Phase Transit. 91, 1268–1276 (2018). https://doi.org/10.1080/01411594.2018.1527914

    Article  CAS  Google Scholar 

  196. T.H. Chowdhury, Md. Akhtaruzzaman, Md.E. Kayesh, R. Kaneko, T. Noda, J.-J. Lee, A. Islam, Low temperature processed inverted planar perovskite solar cells by r-GO/CuSCN hole-transport bilayer with improved stability. Sol. Energy 171, 652–657 (2018). https://doi.org/10.1016/j.solener.2018.07.022

    Article  CAS  Google Scholar 

  197. J.-S. Yeo, C.-H. Lee, D. Jang, S. Lee, S.M. Jo, H.-I. Joh, D.-Y. Kim, Reduced graphene oxide-assisted crystallization of perovskite via solution-process for efficient and stable planar solar cells with module-scales. Nano Energy 30, 667–676 (2016). https://doi.org/10.1016/j.nanoen.2016.10.065

    Article  CAS  Google Scholar 

  198. Z. Zhou, X. Li, M. Cai, F. Xie, Y. Wu, Z. Lan, X. Yang, Y. Qiang, A. Islam, L. Han, Stable inverted planar perovskite solar cells with low-temperature-processed hole-transport bilayer. Adv. Energy Mater. 7, 1700763 (2017). https://doi.org/10.1002/aenm.201700763

    Article  CAS  Google Scholar 

  199. M. Que, B. Zhang, J. Chen, X. Yin, S. Yun, Carbon-based electrodes for perovskite solar cells. Mater Adv. 2, 5560–5579 (2021). https://doi.org/10.1039/D1MA00352F

    Article  CAS  Google Scholar 

  200. L.Q. Zhang, X.W. Zhang, Z.G. Yin, Q. Jiang, X. Liu, J.H. Meng, Y.J. Zhao, H.L. Wang, Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A Mater. 3, 12133–12138 (2015). https://doi.org/10.1039/C5TA01898F

    Article  CAS  Google Scholar 

  201. T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam, M.U. Khandaker, Stability of perovskite solar cells: issues and prospects. RSC Adv. 13, 1787–1810 (2023). https://doi.org/10.1039/D2RA05903G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. J. Zhu, Y. Liu, B. He, W. Zhang, L. Cui, S. Wang, H. Chen, Y. Duan, Q. Tang, Efficient interface engineering of N,N′-Dicyclohexylcarbodiimide for stable HTMs-free CsPbBr 3 perovskite solar cells with 10.16%-efficiency. Chem. Eng. J. 428, 131950 (2022). https://doi.org/10.1016/j.cej.2021.131950

    Article  CAS  Google Scholar 

  203. W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng, H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 9, 1625 (2018). https://doi.org/10.1038/s41467-018-04028-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Q. Jiang, X. Zhang, J. You, SnO2: a wonderful electron transport layer for perovskite solar cells. Small 14, 1801154 (2018). https://doi.org/10.1002/smll.201801154

    Article  CAS  Google Scholar 

  205. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3 NH3 PbI3. Science 1979(342), 344–347 (2013). https://doi.org/10.1126/science.1243167

    Article  CAS  Google Scholar 

  206. F. Li, C. Wang, P. Liu, Y. Xiao, L. Bai, F. Qi, X. Hou, H. Zhang, Y. Wang, S. Wang, X.-Z. Zhao, Fully air-processed carbon-based efficient hole conductor free planar heterojunction perovskite solar cells with high reproducibility and stability. Solar RRL. 3, 1800297 (2019). https://doi.org/10.1002/solr.201800297

    Article  CAS  Google Scholar 

  207. Y. Yang, Z. Liu, W.K. Ng, L. Zhang, H. Zhang, X. Meng, Y. Bai, S. Xiao, T. Zhang, C. Hu, K.S. Wong, S. Yang, An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells. Adv. Funct. Mater. 29, 1806506 (2019). https://doi.org/10.1002/adfm.201806506

    Article  CAS  Google Scholar 

  208. F. Wan, X. Qiu, H. Chen, Y. Liu, H. Xie, J. Shi, H. Huang, Y. Yuan, Y. Gao, C. Zhou, Accelerated electron extraction and improved UV stability of TiO2 based perovskite solar cells by SnO2 based surface passivation. Org. Electron. 59, 184–189 (2018). https://doi.org/10.1016/j.orgel.2018.05.008

    Article  CAS  Google Scholar 

  209. Y. Wang, H. Zhao, Y. Mei, H. Liu, S. Wang, X. Li, Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl. Mater. Interfaces 11, 916–923 (2019). https://doi.org/10.1021/acsami.8b18530

    Article  CAS  PubMed  Google Scholar 

  210. Y. Xiao, C. Wang, K.K. Kondamareddy, N. Cheng, P. Liu, Y. Qiu, F. Qi, S. Kong, W. Liu, X.-Z. Zhao, Efficient electron transport scaffold made up of submicron TiO2 spheres for high-performance hole-transport material free perovskite solar cells. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b01038

    Article  Google Scholar 

  211. X. Zhou, L. Zhang, H. Hu, Z. Jiang, D. Wang, J. Chen, Y. Li, J. Wu, Y. Zhang, M. Zhang, C. Liu, Y. Peng, X. Wang, B. Xu, Highly efficient and stable hole-transport-layer-free inverted perovskite solar cells achieved 22% efficiency through p-type molecular synergistic doping. Nano Energy 104, 107988 (2022). https://doi.org/10.1016/j.nanoen.2022.107988

    Article  CAS  Google Scholar 

  212. Z. Zhou, Z. Qiang, T. Sakamaki, I. Takei, R. Shang, E. Nakamura, Organic/inorganic hybrid p-type semiconductor doping affords hole transporting layer free thin-film perovskite solar cells with high stability. ACS Appl. Mater. Interfaces 11, 22603–22611 (2019). https://doi.org/10.1021/acsami.9b06513

    Article  CAS  PubMed  Google Scholar 

  213. S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 139, 7504–7512 (2017). https://doi.org/10.1021/jacs.7b01439

    Article  CAS  PubMed  Google Scholar 

  214. S. Ye, H. Rao, W. Yan, Y. Li, W. Sun, H. Peng, Z. Liu, Z. Bian, Y. Li, C. Huang, A strategy to simplify the preparation process of perovskite solar cells by co-deposition of a hole-conductor and a perovskite layer. Adv. Mater. 28, 9648–9654 (2016). https://doi.org/10.1002/adma.201603850

    Article  CAS  PubMed  Google Scholar 

  215. Y. Li, S. Ye, W. Sun, W. Yan, Y. Li, Z. Bian, Z. Liu, S. Wang, C. Huang, Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. J. Mater. Chem. A Mater. 3, 18389–18394 (2015). https://doi.org/10.1039/C5TA05989E

    Article  CAS  Google Scholar 

  216. Z. Zhou, S. Pang, Highly efficient inverted hole-transport-layer-free perovskite solar cells. J. Mater. Chem. A Mater. 8, 503–512 (2020). https://doi.org/10.1039/C9TA10694D

    Article  CAS  Google Scholar 

  217. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3 NH3 PbI3–x Clx” perovskite. Adv. Funct. Mater. (2014). https://doi.org/10.1002/adfm.201401872

    Article  PubMed  PubMed Central  Google Scholar 

  218. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 1979(347), 522–525 (2015). https://doi.org/10.1126/science.aaa0472

    Article  CAS  Google Scholar 

  219. Y. Liu, J. Guo, E. Zhu, L. Liao, S.-J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018). https://doi.org/10.1038/s41586-018-0129-8

    Article  CAS  PubMed  Google Scholar 

  220. M. Pfeiffer, A. Beyer, T. Fritz, K. Leo, Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: a systematic Seebeck and conductivity study. Appl. Phys. Lett. 73, 3202–3204 (1998). https://doi.org/10.1063/1.122718

    Article  CAS  Google Scholar 

  221. K. Schutt, P.K. Nayak, A.J. Ramadan, B. Wenger, Y. Lin, H.J. Snaith, Overcoming zinc oxide interface instability with a methylammonium-free perovskite for high-performance solar cells. Adv. Funct. Mater. 29, 1900466 (2019). https://doi.org/10.1002/adfm.201900466

    Article  CAS  Google Scholar 

  222. M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers (Basel) 13, 2003 (2021). https://doi.org/10.3390/polym13122003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. M. Beygisangchin, A. Hossein Baghdadi, S. Kartom Kamarudin, S. Abdul Rashid, J. Jakmunee, N. Shaari, Recent progress in polyaniline and its composites: synthesis, properties, and applications. Eur. Polym. J. (2024). https://doi.org/10.1016/j.eurpolymj.2024.112948

    Article  Google Scholar 

  224. I. Letchumanan, R. Mohamad Yunus, M.S. Mastar@Masdar, M. Beygisangchin, S.K. Kamarudin, N.A. Karim, Modified surface nano-topography for renewable energy applications for promising cobalt-based nanomaterials towards dual-functional electrocatalyst. Int. J. Hydrog. Energy 59, 1518–1539 (2024). https://doi.org/10.1016/j.ijhydene.2024.01.316

    Article  CAS  Google Scholar 

  225. S.A.L. Weber, I.M. Hermes, S.-H. Turren-Cruz, C. Gort, V.W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress, R. Berger, How the formation of interfacial charge causes hysteresis in perovskite solar cells. Energy Environ. Sci. 11, 2404–2413 (2018). https://doi.org/10.1039/C8EE01447G

    Article  CAS  Google Scholar 

  226. A. Uddin, H. Yi, Progress and challenges of SnO2 electron transport layer for perovskite solar cells: a critical review. Solar RRL. 6, 2100983 (2022). https://doi.org/10.1002/solr.202100983

    Article  CAS  Google Scholar 

  227. L. Huang, J. Xu, X. Sun, Y. Du, H. Cai, J. Ni, J. Li, Z. Hu, J. Zhang, Toward revealing the critical role of perovskite coverage in highly efficient electron-transport layer-free perovskite solar cells: an energy band and equivalent circuit model perspective. ACS Appl. Mater. Interfaces 8, 9811–9820 (2016). https://doi.org/10.1021/acsami.6b00544

    Article  CAS  PubMed  Google Scholar 

  228. Q. Han, J. Ding, Y. Bai, T. Li, J.-Y. Ma, Y.-X. Chen, Y. Zhou, J. Liu, Q.-Q. Ge, J. Chen, J.T. Glass, M.J. Therien, J. Liu, D.B. Mitzi, J.-S. Hu, Carrier dynamics engineering for high-performance electron-transport-layer-free perovskite photovoltaics. Chem. 4, 2405–2417 (2018). https://doi.org/10.1016/j.chempr.2018.08.004

    Article  CAS  Google Scholar 

  229. C.W. Jang, D.H. Shin, S.-H. Choi, Photostable electron-transport-layer-free flexible graphene quantum dots/perovskite solar cells by employing bathocuproine interlayer. J. Alloys Compd. 886, 161355 (2021). https://doi.org/10.1016/j.jallcom.2021.161355

    Article  CAS  Google Scholar 

  230. W. Wu, J. Liao, J. Zhong, Y. Xu, L. Wang, J. Huang, Suppressing interfacial charge recombination in electron-transport-layer-free perovskite solar cells to give an efficiency exceeding 21%. Angew. Chem. 132, 21166–21173 (2020). https://doi.org/10.1002/ange.202005680

    Article  Google Scholar 

  231. L. Huang, S. Bu, D. Zhang, R. Peng, Q. Wei, Z. Ge, J. Zhang, Schottky/pn cascade heterojunction constructed by intentional n-type doping perovskite toward efficient electron layer-free perovskite solar cells. Solar RRL. 3, 1800274 (2019). https://doi.org/10.1002/solr.201800274

    Article  CAS  Google Scholar 

  232. J. Liao, W. Wu, Y. Jiang, D. Kuang, L. Wang, Maze-like halide perovskite films for efficient electron transport layer-free perovskite solar cells. Solar RRL. 3, 1800268 (2019). https://doi.org/10.1002/solr.201800268

    Article  CAS  Google Scholar 

  233. P. Zhao, M. Han, W. Yin, X. Zhao, S.G. Kim, Y. Yan, M. Kim, Y.J. Song, N.G. Park, H.S. Jung, Insulated interlayer for efficient and photostable electron-transport-layer-free perovskite solar cells. ACS Appl. Mater. Interfaces 10, 10132–10140 (2018). https://doi.org/10.1021/acsami.8b00021

    Article  CAS  PubMed  Google Scholar 

  234. J. Pascual, I. Kosta, E. Palacios-Lidon, A. Chuvilin, G. Grancini, M.K. Nazeeruddin, H.J. Grande, J.L. Delgado, R. Tena-Zaera, Co-solvent effect in the processing of the perovskite: fullerene blend films for electron transport layer-free solar cells. J. Phys. Chem. C 122, 2512–2520 (2018). https://doi.org/10.1021/acs.jpcc.7b11141

    Article  CAS  Google Scholar 

  235. X. Wei, M. Zhang, X. Liu, F. Chen, X. Lei, H. Liu, F. Meng, H. Zeng, S. Yang, J. Liu, Semitransparent CH3 NH3 PbI3 films achieved by solvent engineering for annealing- and electron transport layer-free planar perovskite solar cells. Solar RRL. 2, 1700222 (2018). https://doi.org/10.1002/solr.201700222

    Article  CAS  Google Scholar 

  236. R. Sandoval-Torrientes, J. Pascual, I. García-Benito, S. Collavini, I. Kosta, R. Tena-Zaera, N. Martín, J.L. Delgado, Modified fullerenes for efficient electron transport layer-free perovskite/fullerene blend-based solar cells. Chemsuschem 10, 2023–2029 (2017). https://doi.org/10.1002/cssc.201700180

    Article  CAS  PubMed  Google Scholar 

  237. P. Cui, D. Wei, J. Ji, D. Song, Y. Li, X. Liu, J. Huang, T. Wang, J. You, M. Li, Highly efficient electron-selective layer free perovskite solar cells by constructing effective pn heterojunction. Solar RRL. 1, 1600027 (2017). https://doi.org/10.1002/solr.201600027

    Article  CAS  Google Scholar 

  238. J. Pascual, I. Kosta, T. Tuyen Ngo, A. Chuvilin, G. Cabanero, H.J. Grande, E.M. Barea, I. Mora-Seró, J.L. Delgado, R. Tena-Zaera, Electron transport layer-free solar cells based on perovskite-fullerene blend films with enhanced performance and stability. Chemsuschem 9, 2679–2685 (2016). https://doi.org/10.1002/cssc.201600940

    Article  CAS  PubMed  Google Scholar 

  239. T. Shi, J. Chen, J. Zheng, X. Li, B. Zhou, H. Cao, Y. Wang, Ti/Au cathode for electronic transport material-free organic–inorganic hybrid perovskite solar cells. Sci. Rep. 6, 1–6 (2016)

    Article  CAS  Google Scholar 

  240. W. Ke, G. Fang, J. Wan, H. Tao, Q. Liu, L. Xiong, P. Qin, J. Wang, H. Lei, G. Yang, M. Qin, X. Zhao, Y. Yan, Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat. Commun. 6, 6700 (2015). https://doi.org/10.1038/ncomms7700

    Article  CAS  PubMed  Google Scholar 

  241. N.F. Rostan, S. Sepeai, R. Mohamad Yunus, N. Ahmad Ludin, M.A. Mat Teridi, M.A. Ibrahim, K. Sopian, Optoelectronic and morphology properties of perovskite/silicon interface layer for tandem solar cell application. Surf. Interface Anal. 52, 422–432 (2020). https://doi.org/10.1002/sia.6750

    Article  CAS  Google Scholar 

  242. C.D. Bailie, M.D. McGehee, High-efficiency tandem perovskite solar cells. MRS Bull. 40, 681–686 (2015). https://doi.org/10.1557/mrs.2015.167

    Article  CAS  Google Scholar 

  243. T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for > 30% efficiency. IEEE J Photovolt. 4, 208–214 (2014). https://doi.org/10.1109/JPHOTOV.2013.2283342

    Article  Google Scholar 

  244. Q. Wali, N.K. Elumalai, Y. Iqbal, A. Uddin, R. Jose, Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 84, 89–110 (2018). https://doi.org/10.1016/j.rser.2018.01.005

    Article  CAS  Google Scholar 

  245. S.M. Bedair, M.F. Lamorte, J.R. Hauser, A two-junction cascade solar-cell structure. Appl. Phys. Lett. 34, 38–39 (1979). https://doi.org/10.1063/1.90576

    Article  CAS  Google Scholar 

  246. A.D. Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D Appl. Phys. 13, 839–846 (1980). https://doi.org/10.1088/0022-3727/13/5/018

    Article  Google Scholar 

  247. M. Beygisangchin, S.A. Rashid, H.N. Lim, S. Shafie, A.R. Sadrolhosseini, Effect of toluene-4-sulfonic acid monohydrate concentrations on properties of polyaniline for pyrene detection via photoluminescence spectroscopy. Opt Mater (Amst). 131, 112711 (2022). https://doi.org/10.1016/j.optmat.2022.112711

    Article  CAS  Google Scholar 

  248. M. Beygisangchin, S. Abdul Rashid, S. Shafie, H.N. Lim, Evaluation of N-methyl-2-pyrrolidone concentration on synthesis and characterization of 1% toluene-4-sulfonic acid monohydrate doped polyaniline film. J. Inorg. Organomet. Polym. Mater. 33, 1246–1260 (2023). https://doi.org/10.1007/s10904-023-02574-3

    Article  CAS  Google Scholar 

  249. M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, Polyaniline synthesized by different dopants for fluorene detection via photoluminescence spectroscopy. Materials. 14, 7382 (2021). https://doi.org/10.3390/ma14237382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. M. Beygisangchin, S.A. Rashid, S. Shafie, Investigation on polyaniline synthesised by camphor sulphonic acid; optical, thermal, structural, and electrical properties. Int. J. Nanotechnol. 20, 998–1009 (2023). https://doi.org/10.1504/IJNT.2023.135814

    Article  CAS  Google Scholar 

  251. S. Essig, S. Ward, M.A. Steiner, D.J. Friedman, J.F. Geisz, P. Stradins, D.L. Young, Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Proc. 77, 464–469 (2015). https://doi.org/10.1016/j.egypro.2015.07.066

    Article  CAS  Google Scholar 

  252. S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, F. Dimroth, Wafer-bonded GaInP/GaAs//Si Solar cells with 30% efficiency under concentrated sunlight. IEEE J. Photovolt. 5, 977–981 (2015). https://doi.org/10.1109/JPHOTOV.2015.2400212

    Article  Google Scholar 

  253. I. Tobías, A. Luque, Ideal efficiency of monolithic, series-connected multijunction solar cells. Prog. Photovolt. Res. Appl. 10, 323–329 (2002). https://doi.org/10.1002/pip.427

    Article  CAS  Google Scholar 

  254. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, N. Karam, III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2009). https://doi.org/10.1039/B809257E

    Article  CAS  Google Scholar 

  255. M.A. Green, M.J. Keevers, I. Thomas, J.B. Lasich, K. Emery, R.R. King, 40% efficient sunlight to electricity conversion. Prog. Photovolt. Res. Appl. 23, 685–691 (2015). https://doi.org/10.1002/pip.2612

    Article  Google Scholar 

  256. S.P. Bremner, M.Y. Levy, C.B. Honsberg, Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Prog. Photovolt. Res. Appl. 16, 225–233 (2008). https://doi.org/10.1002/pip.799

    Article  Google Scholar 

  257. M. Okil, A. Shaker, I.S. Ahmed, T.M. Abdolkader, M.S. Salem, Design and analysis of Sb2S3/Si thin film tandem solar cell. Sol. Energy Mater. Sol. Cells 253, 112210 (2023). https://doi.org/10.1016/j.solmat.2023.112210

    Article  CAS  Google Scholar 

  258. M. Habibi, F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Progress in emerging solution-processed thin film solar cells—part II: perovskite solar cells. Renew. Sustain. Energy Rev. 62, 1012–1031 (2016). https://doi.org/10.1016/j.rser.2016.05.042

    Article  CAS  Google Scholar 

  259. A. Fakharuddin, L. Schmidt-Mende, G. Garcia-Belmonte, R. Jose, I. Mora-Sero, Interfaces in perovskite solar cells. Adv. Energy Mater. 7, 1700623 (2017). https://doi.org/10.1002/aenm.201700623

    Article  CAS  Google Scholar 

  260. Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown, R. Jose, Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017). https://doi.org/10.1016/j.nanoen.2017.02.025

    Article  CAS  Google Scholar 

  261. Q. Wang, C. Chueh, T. Zhao, J. Cheng, M. Eslamian, W.C.H. Choy, A.K.-Y. Jen, Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells. Chemsuschem 10, 3794–3803 (2017). https://doi.org/10.1002/cssc.201701262

    Article  CAS  PubMed  Google Scholar 

  262. F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Progress, challenges and perspectives in flexible perovskite solar cells. Energy Environ. Sci. 9, 3007–3035 (2016). https://doi.org/10.1039/C6EE01137C

    Article  Google Scholar 

  263. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). https://doi.org/10.1021/jz500279b

    Article  CAS  PubMed  Google Scholar 

  264. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982 (2014). https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  265. A.R. Sadrolhosseini, M. Beygisangchin, S. Shafie, S.A. Rashid, H. Nezakati, Laser ablated titanium oxide nanoparticles in carbon quantum dots solution for detection of sugar using fluorescence spectroscopy. Mater. Res. Express. 8, 105003 (2021). https://doi.org/10.1088/2053-1591/abdf0f

    Article  CAS  Google Scholar 

  266. A.R. Sadrolhosseini, G. Krishnan, S. Safie, M. Beygisangchin, S.A. Rashid, S.W. Harun, Enhancement of the fluorescence property of carbon quantum dots based on laser ablated gold nanoparticles to evaluate pyrene. Opt. Mater. Express 10, 2227 (2020). https://doi.org/10.1364/OME.396914

    Article  CAS  Google Scholar 

  267. F. Usman, J.O. Dennis, A.I. Aljameel, M.K.M. Ali, O. Aldaghri, K.H. Ibnaouf, Z.U. Zango, M. Beygisangchin, A. Alsadig, F. Meriaudeau, Plasmonic biosensors for the detection of lung cancer biomarkers: a review. Chemosensors 9, 326 (2021). https://doi.org/10.3390/chemosensors9110326

    Article  CAS  Google Scholar 

  268. M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, M. Topič, CH_3NH_3PbI_3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263 (2015). https://doi.org/10.1364/OE.23.00A263

    Article  CAS  PubMed  Google Scholar 

  269. P. Loper, B. Niesen, S.-J. Moon, S. Martin de Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F.-J. Haug, J.-H. Yum, S. De Wolf, C. Ballif, Organic–inorganic halide perovskites: perspectives for silicon-based tandem solar cells. IEEE J Photovolt. 4, 1545–1551 (2014). https://doi.org/10.1109/JPHOTOV.2014.2355421

    Article  Google Scholar 

  270. N.N. Lal, T.P. White, K.R. Catchpole, Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovolt. 4, 1380–1386 (2014). https://doi.org/10.1109/JPHOTOV.2014.2342491

    Article  Google Scholar 

  271. N. Kano, Attractive quality and must-be quality. J. Jpn. Soc. Qual. Control. 31, 147–156 (1984)

    Google Scholar 

  272. P.-L. Qin, Q. He, C. Chen, X.-L. Zheng, G. Yang, H. Tao, L.-B. Xiong, L. Xiong, G. Li, G.-J. Fang, High-performance rigid and flexible perovskite solar cells with low-temperature solution-processable binary metal oxide hole-transporting materials. Solar RRL. 1, 1700058 (2017). https://doi.org/10.1002/solr.201700058

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education of Malaysia under HiCoE SelFuel UKM:AKR42 and Universiti Kebangsaan Malaysia for supporting this researchproject through RIA 2 (Modal Insan Penyelidikan) and DIP-2021-025.

Author information

Authors and Affiliations

Authors

Contributions

Mahnoush Beygisangchin: Conceptualization, Methodology, Investigations, Software, Writing- Original draft preparation Writing—Review and Editing. Siti Kartom Kamarudin: Investigations, Software, Writing—Review and Editing. Akrajas Ali Umar: Conceptualization, Methodology, Software, Supervision, Writing—Review and Editing. Bita Farhadi: Visualization, Investigation, Supervision, Writing- Reviewing and Editing. Amir Hossein Baghdadi: Supervision, Methodology, Validation. Iswary Letchumanan: Validation, Investigations, Methodology. Armin Rajabi: Investigation, Writing- Reviewing and Editing. Abang Anuar Ehsan: Validation, Software. Norazuwana Shaari: Validation, Software, Methodology.

Corresponding authors

Correspondence to Mahnoush Beygisangchin or Akrajas Ali Umar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beygisangchin, M., Kamarudin, S.K., Umar, A.A. et al. Advancements in configuration structures and fabrication techniques for achieving stability in perovskite solar cells: a comprehensive review. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00401-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00401-0

Keywords

Navigation