Skip to main content
Log in

Nanostructural engineered titanium dioxide by rare earth metals dual doping for electrochemical supercapacitor applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

High-porosity nanostructured materials are in high demand for use in electrochemical supercapacitor applications due to their immense specific surface areas, which allow for significant energy storage capacity. Using Ti(CH3COO)2⋅2H2O and nitrate salts of dopants such as Cerium, Samarium, Holmium, and Ytterbium as precursors, we synthesized mixed metal-doped TiO2 nanostructures using a facile sol–gel approach. The Ce/Ho Co-doped TiO2 nanostructures-based supercapacitor electrodes retained 99.28% of their capacity after 5,000 cycles, with a specific capacitance of 1714 F g−1 at a current density of 2.0 A g−1. The enhanced electrochemical performance of the optimized Co-doped TiO2 nanostructures can be attributed to the increased TiO2 conductivity due to the optimization of co-doping and the increased specific surface area as a result of structural porosity. These results suggest that porous co-doped TiO2 nanostructures have a wide spectrum of potential electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. T. Ahmad, H. Zhang, B. Yan, A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 55, 102052 (2020). https://doi.org/10.1016/j.scs.2020.102052

    Article  Google Scholar 

  2. T. Munawar, A. Bashir, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S.A. Khan, M. Koc, F. Iqbal, Scalable synthesis of MOF-derived Nd2O3@C and V2O5@C nanohybrid: efficient electrocatalyst for OER in alkaline medium. Fuel 355, 129485 (2024). https://doi.org/10.1016/j.fuel.2023.129485

    Article  CAS  Google Scholar 

  3. N. Abas, A. Kalair, N. Khan, Review of fossil fuels and future energy technologies. Futures 69, 31–49 (2015). https://doi.org/10.1016/j.futures.2015.03.003

    Article  Google Scholar 

  4. E.T. Sayed, T. Wilberforce, K. Elsaid, M.K.H. Rabaia, M.A. Abdelkareem, K.-J. Chae, A.G. Olabi, A critical review on environmental impacts of renewable energy systems and mitigation strategies: wind, hydro, biomass and geothermal. Sci. Total. Environ. 766, 144505 (2021). https://doi.org/10.1016/j.scitotenv.2020.144505

    Article  CAS  PubMed  Google Scholar 

  5. A.Z. Al Shaqsi, K. Sopian, A. Al-Hinai, Review of energy storage services, applications, limitations, and benefits. Energy Rep. 6, 288–306 (2020). https://doi.org/10.1016/j.egyr.2020.07.028

    Article  Google Scholar 

  6. A. Ray, B. Saruhan, Application of ionic liquids for batteries and supercapacitors. Materials (Basel). (2021). https://doi.org/10.3390/ma14112942

    Article  PubMed  PubMed Central  Google Scholar 

  7. R.M. Dell, P.T. Moseley, D.A.J. Rand, Batteries and supercapacitors for use in road vehicles. Towards Sustain. Road Trans. (2014). https://doi.org/10.1016/b978-0-12-404616-0.00007-4

    Article  Google Scholar 

  8. J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková, Supercapacitors: properties and applications. J. Energy Storage. 17, 224–227 (2018). https://doi.org/10.1016/j.est.2018.03.012

    Article  Google Scholar 

  9. V.C. Lokhande, A.C. Lokhande, C.D. Lokhande, J.H. Kim, T. Ji, Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J. Alloys Compd. 682, 381–403 (2016). https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  10. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189–1206 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  11. X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage. Natl. Sci. Rev. 4, 453–489 (2017). https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  12. A. Paravannoor, C.A. Augustine, N. Ponpandian, Rare earth nanostructures based on PrOx/CNT composites as potential electrodes for an asymmetric pseudocapacitor cell. J. Rare Earths 38, 625–632 (2020). https://doi.org/10.1016/j.jre.2019.07.017

    Article  CAS  Google Scholar 

  13. J. Mei, T. Liao, G.A. Ayoko, J. Bell, Z. Sun, Cobalt oxide-based nanoarchitectures for electrochemical energy applications. Prog. Mater. Sci. 103, 596–677 (2019). https://doi.org/10.1016/j.pmatsci.2019.03.001

    Article  CAS  Google Scholar 

  14. R. Liu, A. Zhou, X. Zhang, J. Mu, H. Che, Y. Wang, T.T. Wang, Z. Zhang, Z. Kou, Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem. Eng. J. 412, 128611 (2021). https://doi.org/10.1016/j.cej.2021.128611

    Article  CAS  Google Scholar 

  15. Z. Wu, Y. Zhu, X. Ji, C.E. Banks, Transition metal oxides as supercapacitor materials. Nanomater. Adv. Batteries Supercapacit. (2016). https://doi.org/10.1007/978-3-319-26082-2_9

    Article  Google Scholar 

  16. C. An, Y. Zhang, H. Guo, Y. Wang, Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv. 1, 4644–4658 (2019). https://doi.org/10.1039/C9NA00543A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Parangi, M.K. Mishra, Titanium dioxide as energy storage material: a review on recent advancement, ed by H.M. Ali, IntechOpen (Rijeka, 2021). https://doi.org/10.5772/intechopen.99254.

  18. R. Kumar, R. Kumar, B.K. Singh, A. Soam, S. Parida, V. Sahajwalla, P. Bhargava, In situ carbon-supported titanium dioxide (ICS-TiO2) as an electrode material for high performance supercapacitors. Nanoscale Adv. 2, 2376–2386 (2020). https://doi.org/10.1039/d0na00014k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. C.C. Raj, R. Prasanth, Review—advent of TiO2 nanotubes as supercapacitor electrode. J. Electrochem. Soc. 165, E345 (2018). https://doi.org/10.1149/2.0561809jes

    Article  CAS  Google Scholar 

  20. Y. Qian, J. Du, D.J. Kang, Enhanced electrochemical performance of porous Co-doped TiO2 nanomaterials prepared by a solvothermal method. Microporous Mesoporous Mater. 273, 148–155 (2019). https://doi.org/10.1016/j.micromeso.2018.06.056

    Article  CAS  Google Scholar 

  21. V. Balaram, Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10, 1285–1303 (2019). https://doi.org/10.1016/j.gsf.2018.12.005

    Article  CAS  Google Scholar 

  22. W. Zhang, A. Noble, X. Yang, R. Honaker, A comprehensive review of rare earth elements recovery from coal-related materials. Minerals. (2020). https://doi.org/10.3390/min10050451

    Article  Google Scholar 

  23. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J. Mater. Sci. Mater. Electron. 31, 3729–3749 (2020). https://doi.org/10.1007/s10854-020-02994-8

    Article  CAS  Google Scholar 

  24. T. Munawar, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S. Batool, M. Hasan, F. Iqbal, Enhanced photocatalytic, antibacterial, and electrochemical properties of CdO-based nanostructures by transition metals co-doping. Adv. Powder Technol. 33, 103451 (2022). https://doi.org/10.1016/j.apt.2022.103451

    Article  CAS  Google Scholar 

  25. T. Munawar, S. Sardar, F. Mukhtar, M.S. Nadeem, S. Manzoor, M.N. Ashiq, S.A. Khan, M. Koc, F. Iqbal, Fabrication of fullerene-supported La2O3-C60 nanocomposites: dual-functional materials for photocatalysis and supercapacitor electrodes. Phys. Chem. Chem. Phys. 25, 7010–7027 (2023). https://doi.org/10.1039/d2cp05357h

    Article  CAS  PubMed  Google Scholar 

  26. T. Munawar, A. Bashir, S. Sardar, M. Shahid, F. Mukhtar, S. Manzoor, M. Naeem, S. Alim, M. Koc, F. Iqbal, Electrochemical behavior of V/Ce co-doped carbon shell-coated NiO nanocomposite for alkaline OER and supercapacitor applications. J. Energy Storage. 76, 109556 (2024). https://doi.org/10.1016/j.est.2023.109556

    Article  Google Scholar 

  27. F. Mukhtar, T. Munawar, M. Shahid, N. Muhammad, Highly efficient tri—phase—TiO2–Y2O3–V2O5 nanocomposite: structural, optical, photocatalyst, and antibacterial studies. J. Nanostruc. Chem. 12, 547–564 (2022). https://doi.org/10.1007/s40097-021-00430-9

  28. T. Munawar, S. Manzoor, F. Mukhtar, M.S. Nadeem, A.G. Abid, M.N. Ashiq, F. Iqbal, Facile synthesis of nanosphere like rare-earth/transition metal dual-doped TiO2 nanostructure for application as supercapacitor electrodes material. J. Mater. Sci. 57, 11852–11870 (2022). https://doi.org/10.1007/s10853-022-07390-7

    Article  CAS  Google Scholar 

  29. T. Munawar, S. Yasmeen, F. Mukhtar, M.S. Nadeem, K. Mahmood, M.S. Saif, A. Ali, F. Hussain, F. Iqbal, Zn0.9Ce0.05M0.05O (M = Er, Y, V) nanocrystals: structural and energy bandgap engineering of ZnO for enhancing photocatalytic and antibacterial activity. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.02.232

    Article  Google Scholar 

  30. M. Shahid, T. Munawar, F. Mukhtar, S. Manzoor, Facile synthesis of sunlight driven photocatalysts Zn0.9Ho0.05M0.05O ( M = Pr, Sm, Er ) for the removal of synthetic dyes from wastewater. Surfaces and Interfaces. 34, 102376 (2022). https://doi.org/10.1016/j.surfin.2022.102376

    Article  CAS  Google Scholar 

  31. H. Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, J. Lu, Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate. RSC Adv. 8, 34241–34251 (2018). https://doi.org/10.1039/c8ra06681g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17, 2664–2669 (2001). https://doi.org/10.1021/la0015213

    Article  CAS  Google Scholar 

  33. M.R. Al-Mamun, M.N. Karim, N.A. Nitun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic performance assessment of GO and Ag co-synthesized TiO2 nanocomposite for the removal of methyl orange dye under solar irradiation. Environ. Technol. Innov. 22, 101537 (2021). https://doi.org/10.1016/j.eti.2021.101537

    Article  CAS  Google Scholar 

  34. M.M. Matouke, FTIR study of the binary effect of titanium dioxide nanoparticles (nTiO2) and copper (Cu2+) on the biochemical constituents of liver tissues of catfish (Clarias gariepinus). Toxicol. Rep. 6, 1061–1070 (2019). https://doi.org/10.1016/j.toxrep.2019.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. K. Yamakawa, Y. Sato, K. Fukutani, Asymmetric and symmetric absorption peaks observed in infrared spectra of CO2 adsorbed on TiO2 nanotubes. J. Chem. Phys. (2016). https://doi.org/10.1063/1.4946790

    Article  PubMed  Google Scholar 

  36. A.R. Zanatta, D. Scoca, F. Alvarez, Influence of the Anatase and Rutile phases on the luminescent properties of rare-earth-doped TiO2 films. J. Alloys Compd. 780, 491–497 (2019). https://doi.org/10.1016/j.jallcom.2018.11.401

    Article  CAS  Google Scholar 

  37. J.N.L. Lopes, J.C.S. Filho, D.N. Messias, V. Pilla, N.O. Dantas, A.C.A. Silva, A.A. Andrade, Nd3+-doped TiO2 nanocrystals: Structural changes, excited-state dynamics, and luminescence defects. J. Lumin. (2021). https://doi.org/10.1016/j.jlumin.2021.118461

    Article  Google Scholar 

  38. T. Munawar, S. Sardar, M. Shahid, N. Faisal, M. Sumaira, Rational design and electrochemical validation of reduced graphene oxide ( rGO ) supported—CeO2-Nd2O3/rGO ternary nanocomposite as an efficient material for supercapacitor electrodes. J. Appl. Electrochem. (2023). https://doi.org/10.1007/s10800-023-01885-0

    Article  Google Scholar 

  39. S. Manzoor, T. Munawar, S. Gouadria, M. Sadaqat, A. Ghafoor, A. Munawar, F. Hussain, F. Iqbal, I. Ahmad, M. Naeem, Nanopetals shaped CuNi alloy with defects abundant active surface for efficient electrocatalytic oxygen evolution reaction and high performance supercapacitor applications. J. Energy Storage. 55, 105488 (2022). https://doi.org/10.1016/j.est.2022.105488

    Article  Google Scholar 

  40. P. Agharezaei, H. Abdizadeh, M.R. Golobostanfard, Flexible supercapacitor electrodes based on TiO2/rGO/TiO2 sandwich type hybrids. Ceram. Int. 44, 4132–4141 (2018). https://doi.org/10.1016/j.ceramint.2017.11.214

    Article  CAS  Google Scholar 

  41. H. Kim, M.-Y. Cho, M.-H. Kim, K.-Y. Park, H. Gwon, Y. Lee, K.C. Roh, K. Kang, A novel high-energy hybrid supercapacitor with an anatase TiO2–reduced graphene oxide anode and an activated carbon cathode. Adv. Energy Mater. 3, 1500–1506 (2013). https://doi.org/10.1002/aenm.201300467

    Article  CAS  Google Scholar 

  42. A. Ramadoss, S.J. Kim, Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon N. Y. 63, 434–445 (2013). https://doi.org/10.1016/j.carbon.2013.07.006

    Article  CAS  Google Scholar 

  43. S.S. Raut, G.P. Patil, P.G. Chavan, B.R. Sankapal, Vertically aligned TiO2 nanotubes: highly stable electrochemical supercapacitor. J. Electroanal. Chem. 780, 197–200 (2016). https://doi.org/10.1016/j.jelechem.2016.09.024

    Article  CAS  Google Scholar 

  44. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, Reduced graphene oxide/titanium dioxide composites for supercapacitor electrodes: shape and coupling effects. J. Mater. Chem. 22, 19161–19167 (2012). https://doi.org/10.1039/c2jm33177b

    Article  CAS  Google Scholar 

  45. S. Sundriyal, V. Shrivastav, M. Sharma, S. Mishra, A. Deep, Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte. J. Alloys Compd. 790, 377–387 (2019). https://doi.org/10.1016/j.jallcom.2019.03.150

    Article  CAS  Google Scholar 

  46. D. Ponnamma, P. Vijayan, M. Al Ali Al-Maadeed, 3D architectures of titania nanotubes and graphene with efficient nanosynergy for supercapacitors. Mater. Des. 117, 203–212 (2017). https://doi.org/10.1016/j.matdes.2016.12.090

    Article  CAS  Google Scholar 

  47. J. Chen, F. Qiu, Y. Zhang, J. Liang, H. Zhu, S. Cao, Enhanced supercapacitor performances using C-doped porous TiO2 electrodes. Appl. Surf. Sci. 356, 553–560 (2015). https://doi.org/10.1016/j.apsusc.2015.08.114

    Article  CAS  Google Scholar 

  48. R. Bolagam, R. Boddula, P. Srinivasan, Design and synthesis of ternary composite of polyaniline-sulfonated graphene oxide-TiO2 nanorods: a highly stable electrode material for supercapacitor. J. Solid State Electrochem. 22, 129–139 (2018). https://doi.org/10.1007/s10008-017-3732-y

    Article  CAS  Google Scholar 

  49. J. Xu, F. Zheng, C. Xi, Y. Yu, L. Chen, W. Yang, P. Hu, Q. Zhen, S. Bashir, Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. J. Power. Sources 404, 47–55 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.005

    Article  CAS  Google Scholar 

  50. K. Tang, Y. Li, H. Cao, C. Su, Z. Zhang, Y. Zhang, Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor. Electrochim. Acta 190, 678–688 (2016). https://doi.org/10.1016/j.electacta.2015.12.209

    Article  CAS  Google Scholar 

  51. V.H. Pham, T.D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung, J.H. Dickerson, Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon N. Y. 126, 135–144 (2018). https://doi.org/10.1016/j.carbon.2017.10.026

    Article  CAS  Google Scholar 

  52. G. Ramesh, S. Palaniappan, K. Basavaiah, One-step synthesis of PEDOT-PSS.TiO2 by peroxotitanium acid: a highly stable electrode for a supercapacitor. Ionics (Kiel). 24, 1475–1485 (2018). https://doi.org/10.1007/s11581-017-2289-1

    Article  CAS  Google Scholar 

  53. J. Kim, W.H. Khoh, B.H. Wee, J.D. Hong, Fabrication of flexible reduced graphene oxide-TiO2 freestanding films for supercapacitor application. RSC Adv. 5, 9904–9911 (2015). https://doi.org/10.1039/c4ra12980f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Researchers Supporting Project (RSP2024R405), King Saud University, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All have made equal contributions.

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munawar, T., Manzoor, S., Jabbour, K. et al. Nanostructural engineered titanium dioxide by rare earth metals dual doping for electrochemical supercapacitor applications. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00385-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00385-x

Keywords

Navigation