Skip to main content
Log in

Perovskite-like LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2, 0.3, 0.5) oxides with the K2NiF4-type structure active in visible light range: new members of the photocatalyst family

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

A layered perovskite-like oxides LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2, 0.3, 0.5) with a K2NiF4-type structure were obtained. The introduction of copper into the titanium sublattice reduces the band gap. Copper in these materials serve as a photoactivity regulator and is presented in two oxidation states in accordance with optical, voltammetric and EPR data. LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2) exhibits the greatest photoactivity in the oxidation of phenolic compounds and As(III) under the influence of UV and blue light; with increasing degree of substitution x, the photoactivity of LaxSr2−xTi1−x/2Cux/2O4 decreases. This is explained by the formation of a magnetic polaron, which is observed in LaxSr2−xTi1−x/2Cux/2O4 (x = 0.5) in the temperature range from 50 to 200 K and is proven by ESR method. The expansion of the spectral range of LaxSr2−xTi1−x/2Cux/2O4 to the visible region is explained by the formation of acceptor levels \(\left( {{\text{Cu}}^{2 + } + {\text{e}}^{ - } \to {\text{Cu}}^{ + } / {\text{Cu}}^{ + } + {\text{h}}^{ + } \to {\text{Cu}}^{2 + } } \right)\) in the band gap of Sr2TiO4, which increases the efficiency of separation of photogenerated electron–hole pairs. The presence of Cu (I) в LaxSr2−xTi1−x/2Cux/2O4 enhance photoactivity through the formation of active superoxygen radical on its surface (\({\text{Cu}}^{ + } {\text{ + O}}_{{{2}\left( {{\text{ad}}} \right)}} \to {\text{Cu}}^{{2 + }} +\cdot{{\text{O}}}_{{2}}^{ - }\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9 
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated and analysed during this study, which include experimental, spectroscopic, crystallographic and computational data, are included in this article. Source data are provided with this paper.

References

  1. L.N. Skvortsova, L.N. Chukhlomina, N.A. Gormakova, M.S. Kozubets, Vestnik Tomskogo Gosudarstvennogo Universiteta 370, 190–193 (2013)

    Google Scholar 

  2. K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Environ. Sci. Technol. 38(5), 1600–1604 (2004). https://doi.org/10.1021/es034696i

    Article  CAS  PubMed  Google Scholar 

  3. A. Sobczynski, L. Duczmal, W. Zmudzinski, J. Mol. Catal. Chem. 213(2), 225–230 (2004). https://doi.org/10.1016/j.molcata.2003.12.006

    Article  CAS  Google Scholar 

  4. T.S. Choong, T. Chuah, Y. Robiah, F.G. Koay, I. Azni, Desalination 217(1–3), 139–166 (2007). https://doi.org/10.1016/j.desal.2007.01.015

    Article  CAS  Google Scholar 

  5. N.E. Korte, Q. Fernando, Crit. Rev. Environ. Sci. Technol. 21(1), 1–39 (1991). https://doi.org/10.1080/10643389109388408

    Article  CAS  Google Scholar 

  6. V. Vaiano, G. Iervolino, D. Sannino, L. Rizzo, G. Sarno, A. Farina, Appl. Catal. B 160, 247–253 (2014). https://doi.org/10.1016/j.apcatb.2014.05.034

    Article  CAS  Google Scholar 

  7. H. Yang, W.-Y. Lin, K. Rajeshwar, J. Photochem. Photobiol. A 123(1–3), 137–143 (1999). https://doi.org/10.1016/S1010-6030(99)00052-0

    Article  CAS  Google Scholar 

  8. B. Liu, L. Li, X.Q. Liu, X.M. Chen, J. Am. Ceram. Soc. 100(2), 496–500 (2017). https://doi.org/10.1111/jace.14591

    Article  CAS  Google Scholar 

  9. L.W. Lu, M.L. Lv, D. Wang, G. Liu, X.X. Xu, Appl. Catal. B-Environ. 200, 412–419 (2017). https://doi.org/10.1016/j.apcatb.2016.07.035

    Article  CAS  Google Scholar 

  10. L.W. Lu, M.L. Lv, G. Liu, X.X. Xu, Appl. Surf. Sci. 391, 535–541 (2017). https://doi.org/10.1016/j.apsusc.2016.06.160

    Article  CAS  Google Scholar 

  11. A. Sorkh-Kaman-Zadeh, A. Dashtbozorg, J. Mol. Liq. 223, 921–926 (2016). https://doi.org/10.1016/j.molliq.2016.09.016

    Article  CAS  Google Scholar 

  12. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Chem. Rev. 110(11), 6503–6570 (2010). https://doi.org/10.1021/cr1001645

    Article  CAS  PubMed  Google Scholar 

  13. Z. B. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman

  14. N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, J. Mater. Res. 25(1), 3–16 (2010). https://doi.org/10.1557/jmr.2010.0020

    Article  Google Scholar 

  15. X.Q. Sun, Y.H. Xie, F.F. Wu, H.M. Chen, M.L. Lv, S. Ni, G. Liu, X.X. Xu, Inorg. Chem. 54(15), 7445–7453 (2015). https://doi.org/10.1021/acs.inorgchem.5b01042

    Article  CAS  PubMed  Google Scholar 

  16. X.Q. Sun, X.X. Xu, Appl. Catal. B-Environ. 210, 149–159 (2017). https://doi.org/10.1016/j.apcatb.2017.03.063

    Article  CAS  Google Scholar 

  17. X.Q. Sun, Y.L. Mi, F. Jiao, X.X. Xu, ACS Catal. 8(4), 3209–3221 (2018). https://doi.org/10.1021/acscatal.8b00369

    Article  CAS  Google Scholar 

  18. J.X. Yu, X.X. Xu, J. Energy Chem. 51, 30–38 (2020). https://doi.org/10.1016/j.jechem.2020.03.025

    Article  Google Scholar 

  19. S. Pany, A. Nashim, K. Parida, Nanocompos. Vis. Light-Induc. Photocatal. (2017). https://doi.org/10.1007/978-3-319-62446-4_10

    Article  Google Scholar 

  20. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115(46), 13211–13241 (2011). https://doi.org/10.1021/jp204364a

    Article  CAS  PubMed  Google Scholar 

  21. H. Zhang, S. Ni, Y.L. Mi, X.X. Xu, J. Catal. 359, 112–121 (2018). https://doi.org/10.1016/j.jcat.2017.12.031

    Article  CAS  Google Scholar 

  22. M. Salari, K. Konstantinov, H.K. Liu, J. Mater. Chem. 21(13), 5128–5133 (2011). https://doi.org/10.1039/c0jm04085a

    Article  CAS  Google Scholar 

  23. H.M. Chen, X.Q. Sun, X.X. Xu, Electrochim. Acta 252, 138–146 (2017). https://doi.org/10.1016/j.electacta.2017.08.186

    Article  CAS  Google Scholar 

  24. Q.N. Sun, Y.P. Peng, H.L. Chen, K.L. Chang, Y.N. Qiu, S.W. Lai, J. Hazard. Mater. 319, 121–129 (2016). https://doi.org/10.1016/j.jhazmat.2016.02.078

    Article  CAS  PubMed  Google Scholar 

  25. Z.H. Xi, C.J. Li, L. Zhang, M.Y. Xing, J.L. Zhang, Int. J. Hydrog. Energy 39(12), 6345–6353 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.209

    Article  CAS  Google Scholar 

  26. I.V. Baklanova, V.P. Zhukov, V.N. Krasil’nikov, O.I. Gyrdasova, L.Y. Buldakova, E.V. Shalaeva, E.V. Polyakov, M.V. Kuznetsov, I.R. Shein, E.G. Vovkotrub, J. Phys. Chem. Solids 1(111), 473–486 (2017)

    Article  Google Scholar 

  27. T.I. Chupakhina, Y.A. Deeva, N.V. Melnikova, V.V. Gorin, I.S. Sivkov, O.I. Gyrdasova, Mendeleev Commun. 29(3), 349–351 (2019). https://doi.org/10.1016/j.mencom.2019.05.037

    Article  CAS  Google Scholar 

  28. A.A. Nemodruk, Analiticheskaia khimiia mysh'iaka [Analytical chemistry of arsenic]. Moscow, Nauka, 224 (1976)

  29. P. Jin, R. Chang, D. Liu, K. Zhao, L. Zhang, Y. Ouyang, J. Environ. Chem. Eng. 2, 1040–1047 (2014). https://doi.org/10.1016/j.jece.2014.03.023

    Article  CAS  Google Scholar 

  30. R.I. Yousef, B. El-Eswed, H. Ala’a, Chem. Eng. J. 171(3), 1143–1149 (2011). https://doi.org/10.1016/j.cej.2011.05.012

    Article  CAS  Google Scholar 

  31. ОI. Gyrdasova, E.V. Shalaeva, V.N. Krasil’nikov, L.Y. Buldakova, I.V. Baklanova, M.A. Melkozerova, МV. Kuznetsov, МY. Yanchenko, Mater Charact 1(179), 111384 (2021). https://doi.org/10.1016/j.matchar.2021.111384

    Article  CAS  Google Scholar 

  32. Z. Wang, M. Murugananthan, Y. Zhang, Appl. Catal. B 248, 349–356 (2019). https://doi.org/10.1016/j.apcatb.2019.02.041

    Article  CAS  Google Scholar 

  33. O. Fonagy, E. Szabo-Bardos, O. Horvath, J. Photochem. Photobiol. A Chem. 15(407), 113057 (2021). https://doi.org/10.1016/j.jphotochem.2020.113057

    Article  CAS  Google Scholar 

  34. A. Wafi, E. Szabó-Bárdos, O. Horváth, É. Makó, M. Jakab, B. Zsirka, J. Photochem. Photobiol. A Chem. 1(404), 112913 (2021). https://doi.org/10.1016/j.jphotochem.2020.112913

    Article  CAS  Google Scholar 

  35. A. Abragam and B. Bleaney, OUP Oxford, (2012), ISBN: 9780199651528

  36. H. Xiao, J. Tahir-Kheli, W.A. Goddard, J. Phys. Chem. Lett. 2(3), 212–217 (2011). https://doi.org/10.1021/jz101565j

    Article  CAS  Google Scholar 

  37. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55(4), 418–421 (1985). https://doi.org/10.1103/PhysRevLett.55.418

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out in accordance with the state assignment and research plans of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (grant № AAA-A19-119031890025-9). T.P.G., R.M.E., I.V.Y and A.A.S. acknowledge the financial support from the government assignment for FRC Kazan Scientific Center of RAS. The UV-Vis-NIR spectra were recorded on equipment of the Center for Joint Use "Spectroscopy and Analysis of Organic Compounds" at the Postovsky Institute of Organic Synthesis, UB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Chupakhina.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chupakhina, T.I., Eremina, R.M., Gyrdasova, O.I. et al. Perovskite-like LaxSr2−xTi1−x/2Cux/2O4 (x = 0.2, 0.3, 0.5) oxides with the K2NiF4-type structure active in visible light range: new members of the photocatalyst family. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00382-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00382-0

Keywords

Navigation