Skip to main content
Log in

Thermoelectric properties of Mn-doped ZnSbs fabricated without sintering process

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

ZnSb, a promising thermoelectric material, has traditionally been fabricated using a high-temperature sintering process. In the present study, we developed a compaction technology that eliminates the need for sintering, aiming to establish a more efficient fabrication for the ZnSb-based bulks. The thermoelectric properties of Mn-doped ZnSb samples (Zn1-xMnxSb, x = 0, 0.0025, 0.0050, 0.0075, 0.010) fabricated by the compaction technology were evaluated through their electronic and thermal transport properties over a temperature range of 50 to 200 °C. Both pristine ZnSb and Mn-doped ZnSbs exhibited p-type conduction behavior. The electrical conductivity of ZnSb was significantly enhanced by doping of 0.75 at% Mn at Zn-site mainly due to the improved carrier mobility, which leads to large power factor enhancement to 0.089 mW/mK2 for 0.75 at% Mn-doped ZnSb. Consequently, more than 300% enhancement in the dimensionless figure-of-merit (zT) with a peak zT value of 0.08 was achieved in 0.75 at% Mn-doped ZnSb at 473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data of this paper can be made availability by the corresponding author on reasonable request.

References

  1. D. H. Kim, H. S. Kim, J. U. Rahman, W. H. Shin, T. W. Kim, S. I. Kim, Study of phase formation behavior and electronic transport properties in the FeSe2-FeTe2 system. J. Kor. Ceram. Soc. 59, 64–69 (2022)

    Article  CAS  Google Scholar 

  2. K. S. Kim, A. P. Tiwari, T. G. Novak, S. K. Jeon, 3D ordered nanoelectrodes for energy conversion applications: thermoelectric, piezoelectric, and electrocatalytic applications. J. Kor. Ceram. Soc. 58, 379–398 (2021)

    Article  CAS  Google Scholar 

  3. B. Akenoun, S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, A. Benyoussef, The effect of chalcogens-doped with dilation strain on the electronic, optic, and thermoelectric properties of perovskite BaSnO3 compound. J. Kor. Ceram. Soc. 59, 715–728 (2022)

    Article  CAS  Google Scholar 

  4. K. H. Kim, S. H. Shim, K. B. Shim, K. Niihara, J. Hojo, Microstructural and thermoelectric characteristics of zinc oxide-based thermoelectric materials fabricated using a spark plasma sintering process. J. Am. Ceram. Soc. 88, 628–632 (2005)

    Article  CAS  Google Scholar 

  5. R. Malik, Y. W. Kim, Effect of nitride addition on the electrical and thermal properties of pressureless solid-state sintered SiC ceramics. J. Kor. Ceram. Soc. 59, 589–594 (2022)

    Article  CAS  Google Scholar 

  6. R. Pothin, R. M. Ayral, A. Berche, P. Ziolkowski, G. Oppitz, P. Jund, Computational and experimental analysis on Te-doped ZnSb thermoelectric material. Mater. Res. Bull. 101, 90–99 (2018)

    Article  CAS  Google Scholar 

  7. Z. H. Zheng, P. Fan, J. T. Luo, G. X. Liang, P. J. Liu, D. P. Zhang, Enhanced thermoelectric properties of Cu doped ZnSb based thin films. J. Alloy. Compd. 668, 8–12 (2016)

    Article  CAS  Google Scholar 

  8. D. Eklöf, A. Fischer, J. Grins, W. Scherer, U. Häussermann, Transport properties of Ag-doped ZnSb. Z. Anorg. Allg. Chem. 647, 34–40 (2021)

    Article  Google Scholar 

  9. P. H. M. Böttger, G. S. Pomrehn, G. J. Snyder, T. G. Finstad, Doping of p-type ZnSb: single parabolic band model and impurity band conduction. Phys. Status Solidi A-Appl. Mat. 208, 2753–2759 (2011)

    Article  Google Scholar 

  10. A. A. Shabaldin, L. V. Prokofeva, G. J. Snyder, P. P. Konstantinov, G. N. Isachenko, A. V. Asach, The influence of weak tin doping on the thermoelectric properties of zinc antimonide. J. Electron. Mater. 45, 1871–1874 (2016)

    Article  CAS  Google Scholar 

  11. K. Zhou, T. Zhang, B. Liu, Y. J. Yao, Electronic structures and thermoelectric properties of ZnSb doped with Cd and In from first principles calculations. Chin. Phys. Lett. 37, 017102 (2020)

    Article  CAS  Google Scholar 

  12. Q. L. Guo, S. J. Luo, Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency. Mater. Lett. 8, 1550028 (2015)

    CAS  Google Scholar 

  13. D. B. Xiong, N. L. Okamoto, H. Inui, Enhanced thermoelectric figure of merit in p-type Ag-doped ZnSb nanostructured with Ag3Sb. Scr. Mater. 69, 397–400 (2013)

    Article  CAS  Google Scholar 

  14. X. Song, K. Valset, J. S. Graff, A. THØGERSEN, A. E. Gunnæs, S. Luxsacumar, O. M. Løvvik, G. J. Snyder, T. G. Finstad, Nanostructuring of undoped ZnSb by cryo-milling. J. Electron. Mater. 44, 2578–2584 (2015)

    CAS  Google Scholar 

  15. K. Valset, P. H. M. BÖttger, J. Taftø, T. G. Finstad, Thermoelectric properties of Cu doped ZnSb containing Zn3P2 particles. J. Appl. Phys. 111, 023703 (2012)

    Article  Google Scholar 

  16. P. H. M. Böttger, K. Valset, S. Deledda, T. G. Finstad, Influence of ball-milling, nanostructuring, and Ag inclusions on thermoelectric properties of ZnSb. J. Electron. Mater. 39, 1583–1588 (2010)

    Article  Google Scholar 

  17. M. K. Keshavarz, C. W. T. Lo, S. Turenne, Y. Mozharivskyj, N. J. Quitoriano, Hot extrusion of ZnSb-based thermoelectric materials; a novel approach for scale-up production. J. Manuf. Mater. Process. 3, 58 (2019)

    CAS  Google Scholar 

  18. Y. A. Ugai, E. M. Averbakh, G. S. Kruglova, Preparation of single crystals of semiconducting phases in the Zn-Sb system. Russ. Phys. J. 8, 86–89 (1965)

    Google Scholar 

  19. C. Gayner, K. K. Kar, Recent advances in thermoelectric materials. Prog. Mater. Sci. 83, 330–382 (2016)

    Article  CAS  Google Scholar 

  20. J. L. Cui, L. D. Mao, D. Y. Chen, X. Qian, X. L. Liu, W. Yang, Effects of a Cu-contained compound on the microstructures and thermoelectric properties of Zn-Sb based alloys. Curr. Appl. Phys. 9, 713–716 (2009)

    Article  Google Scholar 

  21. A. Fischer, E.W. Scheidt, W. Scherer, D. E. Benson, Y. Wu, D. Eklof, U. Haussermann, Thermal and vibrational properties of thermoelectric ZnSb: exploring the origin of low thermal conductivity. Phys. Rev. B. 91, 224309 (2015)

    Article  Google Scholar 

  22. J. L. Cui, H. Fub, D. Y. Chen, L. D. Mao, X. L. Liu, W. Yang, Thermoelectric properties of Cu-added Zn-Sb based alloys with multi-phase equilibrium. Mater. Charact. 60, 824–828 (2009)

    Article  CAS  Google Scholar 

  23. A. Krokhalev, V. Kharlamov, S. Kuz’min, V. Lysak, SiC-based materials produced by explosive compaction of powders without sintering. J. Kor. Ceram. Soc. 60, 845–855 (2023)

    Article  CAS  Google Scholar 

  24. D. E. Puente-Martinez, J. A. Diaz-Guilen, K. A. Gonzalez-Garcia, S. M. Montemayor, J. C. Diaz-Guillen, O. Burciaga-Diaz, M. E. Bazaldua-Medellin, K. P. Padmasree, Improving the electrical properties of Er-doped CeO2: effect of sintering aids CaO, MgO, and TiO2 on conductivity. J. Kor. Ceram. Soc. 60, 817–829 (2023)

    Article  CAS  Google Scholar 

  25. K. Niedziolka, R. Pothin, F. Rouessac, R. M. Ayral, P. Jund, Theoretical and experimental search for ZnSb-based thermoelectric materials. J. Phys.-Condes. Matter. 26, 11 (2014)

    Article  Google Scholar 

  26. X. Song, M. Schrade, N. Maso, T. G. Finstad, Zn vacancy formation, Zn evaporation and decomposition of ZnSb at elevated temperatures: influence on the microstructure and the electrical properties. J. Alloy. Compd. 710, 762–770 (2017)

    Article  CAS  Google Scholar 

  27. X. Song, T.G. Finstad, in Thermoelectrics for Power Generation - A Look at Trends in the Technology. ed. by M. Nikitin, S. Skipidarov (Intech, London, 2016), p. 120

    Google Scholar 

  28. H. S. Kim, Gibbs, Z. M. Gibbs, Tang, Y. Tang, H. Wang, G. J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  29. C. Okamura, T. Ueda, K. Hasezaki, Preparation of single-phase ZnSb thermoelectric materials using a mechanical grinding process. Mater. Trans. 51, 860–862 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government. (Ministry of Science and ICT(MSIT)) (No. 2022M3H4A1A04076667, No. RS-2023-00236572). The Department of Materials Science and Engineering was supported through the Research-Focused Department Promotion & Interdisciplinary Convergence Research Project as a part of the Support Program for University Development for Dankook University in 2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-il Kim or Hee Jung Park.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Z.D., Pi, J.H., Park, O. et al. Thermoelectric properties of Mn-doped ZnSbs fabricated without sintering process. J. Korean Ceram. Soc. 61, 492–499 (2024). https://doi.org/10.1007/s43207-024-00377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-024-00377-x

Keywords

Navigation