Skip to main content
Log in

Facile synthesis of strontium selenide supported copper sulfide hybrid nanosheets as an efficient electrode for high-performance OER

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

To drive clean and sustainable fuel production via water electrolysis, development of high-performing, cost-effective electrocatalysts rich in earth elements without relying on precious metals or costly materials is crucial. In this study, strontium selenide (SrSe), copper sulfide (CuS), and composite SrSe@CuS via a traditional coprecipitate method under alkaline conditions are synthesized. Characterization techniques including X-ray diffraction, Transmission electron microscopy, Field emission scanning electron microscopy, and Brunauer–Emmett–Teller surface area analysis are employed to analyze the structure, morphology, and surface characteristics. The larger surface area of 123 m2 g−1 and lower crystalline size (46.43 nm) of SrSe@CuS nanosheets show more active sites for oxygen evolution reaction. The oxygen evolution activity displayed overpotentials of 290 mV, a lower tafel slope of 67 mV dec−1, and Lower charge transfer resistance (RCT) values of SrSe@CuS nanosheets (1.82 Ω) surpassing the individual SrSe and CuS nanosheets. Notably, the SrSe@CuS nanosheets exhibited remarkable stability, maintaining an oxygen evolution reaction (OER) activity of 10 mA cm−2 for over 50 h and sustaining a negligible loss in performance even after 50,000 cycles of repetitive cyclivoltammetry scans. These findings highlight their potential applicability in energy conversion and storage systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A.W. Rennuit-Mortensen, K.D. Rasmussen, M. Grahn, How replacing fossil fuels with electrofuels could influence the demand for renewable energy and land area. Smart Energy 10, 100107 (2023)

    Article  Google Scholar 

  2. A. Zahoor et al., The carbon neutrality feasibility of worldwide and in China’s transportation sector by E-car and renewable energy sources before 2060. J. Energy Storage 61, 106696 (2023)

    Article  Google Scholar 

  3. F.Z. Ainou, M. Ali, M. Sadiq, Green energy security assessment in Morocco: green finance as a step toward sustainable energy transition. Environ. Sci. Pollut. Res. 30(22), 61411–61429 (2023)

    Article  Google Scholar 

  4. W. Azam, I. Khan, S.A. Ali, Alternative energy and natural resources in determining environmental sustainability: a look at the role of government final consumption expenditures in France. Environ. Sci. Pollut. Res. 30(1), 1949–1965 (2023)

    Article  Google Scholar 

  5. S.S. Ali et al., Bioplastic production in terms of life cycle assessment: a state-of-the-art review. Environ. Sci. Ecotechnol. 15, 100254 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M.M. Rahman et al., Powering agriculture: present status, future potential, and challenges of renewable energy applications. Renew. Energy 188, 731–749 (2022)

    Article  Google Scholar 

  7. A. Rahman, O. Farrok, M.M. Haque, Environmental impact of renewable energy source based electrical power plants: solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 161, 112279 (2022)

    Article  Google Scholar 

  8. B. Roose et al., Local manufacturing of perovskite solar cells, a game-changer for low-and lower-middle income countries? Energy Environ. Sci. 15(9), 3571–3582 (2022)

    Article  Google Scholar 

  9. U.S. Meda, Y.V. Rajyaguru, A. Pandey, Generation of green hydrogen using self-sustained regenerative fuel cells: opportunities and challenges. Int. J. Hydrogen Energy 48, 28289–28314 (2023)

    Article  CAS  Google Scholar 

  10. V.M. Avargani et al., A comprehensive review on hydrogen production and utilization in North America: prospects and challenges. Energy Convers. Manage. 269, 115927 (2022)

    Article  Google Scholar 

  11. M. Gopinath, R. Marimuthu, A review on solar energy-based indirect water-splitting methods for hydrogen generation. Int. J. Hydrogen Energy 47(89), 37742–37759 (2022)

    Article  CAS  Google Scholar 

  12. P. Pattanayak et al., Recent progress in perovskite transition metal oxide-based photocatalyst and photoelectrode materials for solar-driven water splitting. J. Environ. Chem. Eng. 10, 108429 (2022)

    Article  CAS  Google Scholar 

  13. A.R. Fareza et al., Nanoscale metal oxides–2D materials heterostructures for photoelectrochemical water splitting—a review. J. Mater. Chem. A 10(16), 8656–8686 (2022)

    Article  CAS  Google Scholar 

  14. M. Nasser, H. Hassan, Assessment of hydrogen production from waste heat using hybrid systems of Rankine cycle with proton exchange membrane/solid oxide electrolyzer. Int. J. Hydrogen Energy 48(20), 7135–7153 (2023)

    Article  CAS  Google Scholar 

  15. Y. Wu et al., Recent progress in biomass-derived nanoelectrocatalysts for the sustainable energy development. Fuel 323, 124349 (2022)

    Article  CAS  Google Scholar 

  16. A.P. Demchenko, Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA Adv. 3, 100085 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Jing et al., Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 1(1), 100013 (2022)

    Article  Google Scholar 

  18. N.A. Kamaruzaman et al., Recent advances in transition metals-based materials as electrocatalysts for water splitting. Int. J. Electrochem. Sci. 18, 100187 (2023)

    Article  Google Scholar 

  19. M. Ďurovič, J. Hnát, K. Bouzek, Electrocatalysts for the hydrogen evolution reaction in alkaline and neutral media. A comparative review. J. Power. Sources 493, 229708 (2021)

    Article  Google Scholar 

  20. E. Loni, A. Shokuhfar, M. Siadati, Cobalt-based electrocatalysts for water splitting: an overview. Catal. Surv. Asia 25, 114–147 (2021)

    Article  CAS  Google Scholar 

  21. X. Zhang, L. Wang, H. Fu, Recent advances in rechargeable Zn-based batteries. J. Power. Sources 493, 229677 (2021)

    Article  CAS  Google Scholar 

  22. M.U. Nisa et al., CdSe supported SnO2 nanocomposite with strongly hydrophilic surface for enhanced overall water splitting. Fuel 321, 124086 (2022)

    Article  CAS  Google Scholar 

  23. A.G. Abid et al., Stainless steel supported NiS/CeS nanocomposite for significantly enhanced oxygen evolution reaction in alkaline media. J. Solid State Electrochem. 26(10), 2107–2118 (2022)

    Article  CAS  Google Scholar 

  24. Z. Chen et al., Controllable design of nanoworm-like nickel sulfides for efficient electrochemical water splitting in alkaline media. Mater. Today Energy 18, 100573 (2020)

    Article  CAS  Google Scholar 

  25. A. Farhan et al., Transition-metal sulfides with excellent hydrogen and oxygen reactions: a mini-review. J. Solid State Chem. 329, 124445 (2023)

    Article  Google Scholar 

  26. S.K. Ramesh, V. Ganesan, J. Kim, FeSe2-CoSe2/CoSe2 yolk-shell nanoboxes as superior electrocatalysts for the oxygen evolution reaction. Mater. Lett. 323, 132573 (2022)

    Article  CAS  Google Scholar 

  27. K. Wang et al., Selenide/sulfide heterostructured NiCo2Se4/NiCoS4 for oxygen evolution reaction, hydrogen evolution reaction, water splitting and Zn-air batteries. Electrochim. Acta 368, 137584 (2021)

    Article  CAS  Google Scholar 

  28. J. Yang et al., Metal-organic framework-derived FeS2/CoNiSe2 heterostructure nanosheets for highly-efficient oxygen evolution reaction. Appl. Surf. Sci. 578, 152016 (2022)

    Article  CAS  Google Scholar 

  29. A. Raveendran, M. Chandran, R. Dhanusuraman, A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 13(6), 3843–3876 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Li et al., Optimizing hydrogen production by alkaline water decomposition with transition metal-based electrocatalysts. Environ. Chem. Lett. 31, 2583–2617 (2023)

    Article  Google Scholar 

  31. X. Guan et al., Probing the national development from heavy metals contamination in river sediments. J. Clean. Prod. 419, 138164 (2023)

    Article  CAS  Google Scholar 

  32. S. Vignesh, H. Kim, Influence of molybdenum on Co3O4 coupled N-doped reduced graphene oxide composite for improved electrocatalytic alkaline oxygen evolution reaction: stability and mechanism insights. Int. J. Hydrogen Energy 48, 37234–37247 (2023)

    Article  CAS  Google Scholar 

  33. X. Yang et al., Heterogeneous ultra-thin FeCo-LDH@ Co (OH) 2 nanosheets facilitated electrons transfer for oxygen evolution reaction. Chem. Eng. J. 472, 145076 (2023)

    Article  CAS  Google Scholar 

  34. G. Calzaferri et al., Multiple equilibria description of type H1 hysteresis in gas sorption isotherms of mesoporous materials. Mater. Chem. Phys. 296, 127121 (2023)

    Article  CAS  Google Scholar 

  35. Y. Wang et al., Investigation of photo (electro) catalytic water splitting to evolve H2 on Pt-g-C3N4 nanosheets. Int. J. Hydrogen Energy 47(65), 28007–28018 (2022)

    Article  CAS  Google Scholar 

  36. J. Jiang et al., Superwetting molybdenum-based sulfide/phosphide heterostructures for efficient water electrolysis and solar thermoelectricity self-powered hydrogen production. Appl. Surf. Sci. 631, 157482 (2023)

    Article  CAS  Google Scholar 

  37. H. Tong, Y. Jiang, L. Xia, Enhancing photoelectrochemical water oxidation activity of BiVO4 photoanode through the Co-catalytic effect of Ni (OH) 2 and carbon quantum dots. Int. J. Hydrogen Energy 48, 36694–36706 (2023)

    Article  CAS  Google Scholar 

  38. M. Liu et al., Construction of an electrode with hierarchical three-dimensional NiFe-oxyhydroxides by two-step electrodeposition for large-current oxygen evolution reaction. Int. J. Hydrogen Energy 51, 626–637 (2023)

    Article  Google Scholar 

  39. S. Bi et al., (Digital Presentation) The effects of sulfur-oxygen ratio at the heterogeneous interface on oxygen evolution reaction performance of Ni3S2@ Ni3Fe catalysts for alkaline water electrolysis. ECS Trans. 111(4), 97 (2023)

    Article  Google Scholar 

  40. Y. Sun et al., Deep neural network based battery impedance spectrum prediction using only impedance at characteristic frequencies. J. Power. Sources 580, 233414 (2023)

    Article  CAS  Google Scholar 

  41. S. Feng, et al., Self-assembled heterojunction CoSe2@ CoO catalysts for efficient seawater electrolysis. Electrochim. Acta 463, 142870 (2023)

    Article  CAS  Google Scholar 

  42. Y. Li et al., Effect of molybdenum phosphorus-based single/double-atom catalysts on hydrogen evolution reaction: first principles. Int. J. Hydrogen Energy 51, 957–969 (2023)

    Article  Google Scholar 

  43. N. Chen et al., Facile fabrication of flower-like CuS/MnCO3 microspheres clusters on nickel foam as an efficient bifunctional catalyst for overall water splitting. Int. J. Hydrogen Energy 46(38), 19948–19961 (2021)

    Article  CAS  Google Scholar 

  44. W. Li et al., Heterostructured CoSe2/FeSe2 nanoparticles with abundant vacancies and strong electronic coupling supported on carbon nanorods for oxygen evolution electrocatalysis. ACS Sustain. Chem. Eng. 8(11), 4658–4666 (2020)

    Article  CAS  Google Scholar 

  45. J.A. Rajesh et al., Bifunctional NiCo2Se4 and CoNi2Se4 nanostructures: efficient electrodes for battery-type supercapacitors and electrocatalysts for the oxygen evolution reaction. J. Ind. Eng. Chem. 79, 370–382 (2019)

    Article  CAS  Google Scholar 

  46. Y. Yang et al., An interfacial electron transfer on tetrahedral NiS2/NiSe2 heterocages with dual-phase synergy for efficiently triggering the oxygen evolution reaction. Small 16(1), 1905083 (2020)

    Article  CAS  Google Scholar 

  47. S. Ni et al., Interfacial engineering of the NiSe2/FeSe2 pp heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Appl. Catal. B 299, 120638 (2021)

    Article  CAS  Google Scholar 

  48. O.A. Oyetade, R.J. Kriek, NiSe-Ni3Se2/multiwalled carbon nanotube composites as efficient electrocatalysts for the oxygen evolution reaction in alkaline media. Electrocatalysis 11, 35–45 (2020)

    Article  CAS  Google Scholar 

  49. R. Bose et al., Self-supportive bimetallic selenide heteronanostructures as high-efficiency electro (pre) catalysts for water oxidation. ACS Sustain. Chem. Eng. 9(38), 13114–13123 (2021)

    Article  CAS  Google Scholar 

  50. X. Zhao et al., Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution. Appl. Catal. B 236, 569–575 (2018)

    Article  CAS  Google Scholar 

  51. G. Zhu et al., Nanocomposites based on CoSe2-decorated FeSe2 nanoparticles supported on reduced graphene oxide as high-performance electrocatalysts toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 10(22), 19258–19270 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. S. Sadiq et al., Synergistic modification of end groups in Quinoxaline fused core-based acceptor molecule to enhance its photovoltaic characteristics for superior organic solar cells. J. Mol. Graph. Model. 123, 108518 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Researchers Support Project Number (RSP2024R265), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

All have done equal contribution.

Corresponding author

Correspondence to Muhammad Naeem Ashiq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junaid, A., Abdullah, M., Bano, N. et al. Facile synthesis of strontium selenide supported copper sulfide hybrid nanosheets as an efficient electrode for high-performance OER. J. Korean Ceram. Soc. 61, 469–481 (2024). https://doi.org/10.1007/s43207-024-00372-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-024-00372-2

Keywords

Navigation