Skip to main content
Log in

Stirring-mediated dielectric and ferroelectric response in perovskite BaTiO3 for multilayer capacitor applications

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Barium titanate (BaTiO3) phase is observed in thin films synthesized via an electroless chemical bath deposition (CBD) method. Solution molarity is varied as 0.1–1.2 M. Temperature of solution is kept at 78 °C under continuous stirring. XRD analyses show formation of tetragonal dominant phase of BaTiO3 along with titania peaks at low molarity values, whereas tetragonal BaTiO3 is observed at higher molarity values. Optical results show maximum transmission (∼80%) for 1.2 M-based annealed thin films. Variation in direct band gap is observed from ∼3.9 to 4.6 eV in case of annealed thin films. High value of dielectric constant (~ 530 at log f = 3) and low value of tangent loss is attained for thin films prepared with 1.2 M. The frequency-dependent dielectric behavior is attained for BaTiO3. Temperature-dependent dielectric study shows effect of grains and grain boundaries. FTIR analyses show the formation of tetragonal barium titanate band. Maximum spontaneous polarization (~ 6 × 10−3 μC/cm2) and remnant polarization (~ 2 × 10−3 μC/cm2) along with maximum efficiency are observed for the sample prepared with 1.2 M solution. It is worth-mentioning here that frequency dependent dielectric constant along with ferroelectric properties of BaTiO3 are observed in the present work making this material potential candidate for multilayer capacitor-based applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Relevant data has been used in the manuscript.

References

  1. D. Hu, Z. Pan, X. Tan, F. Yang, J. Ding, X. Zhang, P. Li, J. Liu, J. Zhai, H. Pan, Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. Chem. Eng. J. 409, 127375 (2021)

    Article  CAS  Google Scholar 

  2. Li, D., Lin, Y., Zhang, M., & Yang, H. (2020). Achieved ultrahigh energy storage properties and outstanding charge–discharge performances in (Na0. 5Bi0. 5) 0.7 Sr0. 3TiO3-based ceramics by introducing a linear additive. Chemical Engineering Journal392, 123729.

  3. W.B. Li, D. Zhou, W.F. Liu, J.Z. Su, F. Hussain, D.W. Wang, G. Wang, Z.L. Lu, Q.P. Wang, High-temperature BaTiO3-based ternary dielectric multilayers for energy storage applications with high efficiency. Chem. Eng. J. 414, 128760 (2021)

    Article  CAS  Google Scholar 

  4. J. Wang, S. Jiang, D. Jiang, J. Tian, Y. Li, Y. Wang, Microstructural design of BaTiO3-based ceramics for temperature-stable multilayer ceramic capacitors. Ceram. Int. 38(7), 5853–5857 (2012)

    Article  CAS  Google Scholar 

  5. K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, H.W. Jang, Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 7(32), 9782–9802 (2019)

    Article  CAS  Google Scholar 

  6. G. Tanvir, M. Saleem, H. Jabbar, A. Hamza, M.A. Hussain, M.Z. Khan, A.H. Baluch, M. Irfan, M.S. Butt, F. Naeem, A. Ghaffar, A. Maqbool, Study of ferroelectric and piezoelectric response of heat-treated surfactant-based BaTiO3 nanopowder for high energy capacitors. Mater. Sci. Eng. B 287, 116100 (2023)

    Article  CAS  Google Scholar 

  7. Xiao, D. Q., Wu, J. G., Wu, L., Zhu, J. G., Yu, P., Lin, D. M., ... & Sun, Y. (2009). Investigation on the composition design and properties study of perovskite lead-free piezoelectric ceramics. Journal of materials science44, 5408–5419.

  8. Wu, H., & Zhu, X. (2016). Perovskite oxide nanocrystals-synthesis, characterization, functionalization, and novel applications. Perovskite Materials-Synthesis, Characterisation, Properties, and Applications; Pan, L., Zhu, G., Eds, 153–183.

  9. J.M. Hwu, W.H. Yu, W.C. Yang, Y.W. Chen, Y.Y. Chou, Characterization of dielectric barium titanate powders prepared by homogeneous precipitation chemical reaction for embedded capacitor applications. Mater. Res. Bull. 40(10), 1662–1679 (2005)

    Article  CAS  Google Scholar 

  10. Saravanan, R. (2018). Titanate based ceramic dielectric materials. Materials Research Forum LLC.

  11. Rahman, M. A. (2023). Understanding of doping sites and versatile applications of heteroatom modified BaTiO3 ceramic. Journal of Asian Ceramic Societies, 1–10.

  12. S. Mtougui, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad, Magnetic properties of the perovskite BiFeO3: Monte Carlo simulation. Superlattices Microstruct. Microstruct. 123, 111–118 (2018)

    Article  CAS  Google Scholar 

  13. A. Navrotsky, Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures. Chem. Mater. 10(10), 2787–2793 (1998)

    Article  CAS  Google Scholar 

  14. Pola, S., Panwar, N., & Coondoo, I. (2021). Perovskite and Piezoelectric Materials. BoD–Books on Demand.

  15. V. Buscaglia, C.A. Randall, Size and scaling effects in barium titanate. An overview. J. Eur. Ceram. Soc. 40, 3744–3758 (2020)

    Article  CAS  Google Scholar 

  16. W.D. Nothwang, M.W. Cole, S.G. Hirsch, Grain growth and residual stress in BST thin films. Integr. Ferroelectr.. Ferroelectr. 71(1), 107–113 (2005)

    Article  CAS  Google Scholar 

  17. A. Karvounis, F. Timpu, V.V. Vogler-Neuling, R. Savo, R. Grange, Barium titanate nanostructures and thin films for photonics. Advanced Optical Materials 8(24), 2001249 (2020)

    Article  CAS  Google Scholar 

  18. H. Huang, X. Yao, Preparation of BaTiO3 thin films by mist plasma evaporation on MgO buffer layer. Ceram. Int. 30(7), 1535–1538 (2004)

    Article  CAS  Google Scholar 

  19. A. Ianculescu, B. Despax, V. Bley, T. Lebey, R. Gavrilă, N. Drăgan, Structure–properties correlations for barium titanate thin films obtained by rf-sputtering. J. Eur. Ceram. Soc. 27(2–3), 1129–1135 (2007)

    Article  CAS  Google Scholar 

  20. C.K. Tan, G.K. Goh, Growth and dielectric properties of solvothermal BaTiO3 polycrystalline thin films. Thin Solid Films 515(16), 6572–6576 (2007)

    Article  CAS  Google Scholar 

  21. C.K. Tan, G.K.L. Goh, G.K. Lau, Growth and dielectric properties of BaTiO3 thin films prepared by the microwave-hydrothermal method. Thin Solid Films 516(16), 5545–5550 (2008)

    Article  CAS  Google Scholar 

  22. Y. Huang, J. Lin, H. Du, L. Gao, Y. Hu, Preparation and photoluminescence properties of ZnO/amorphous-BaTiO3 thin-films by sol–gel process. Mater. Lett. 60(29–30), 3818–3821 (2006)

    Article  CAS  Google Scholar 

  23. O. Harizanov, A. Harizanova, T. Ivanova, Formation and characterization of sol–gel barium titanate. Mater. Sci. Eng. B 106(2), 191–195 (2004)

    Article  Google Scholar 

  24. F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. De Lazaro, R. Magnani, P.S. Pizani, T.M. Boschi, F. Lanciotti, Theoretical and experimental study on the photoluminescence in BaTiO3 amorphous thin films prepared by the chemical route. J. Lumin.Lumin. 104(3), 175–185 (2003)

    Article  CAS  Google Scholar 

  25. L. Singh, R. Singh, Effect of dopant concentration on structural properties of chemical bath deposited Mn-doped Pbs nanocrystalline thin films. Chalcogenide Letters 17(7), 375–384 (2020)

    Article  Google Scholar 

  26. S. Khan, N. Humera, S. Niaz, S. Riaz, S. Atiq, S. Naseem, Simultaneous normal–Anomalous dielectric dispersion and room temperature ferroelectricity in CBD perovskite BaTiO3 thin films. J. Market. Res. 9(5), 11439–11452 (2020)

    CAS  Google Scholar 

  27. S.S. Kumbhar, M.A. Mahadik, P.K. Chougule, V.S. Mohite, Y.M. Hunge, K.Y. Rajpure, A.V. Moholkar, C.H. Bhosale, Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method. Mater. Sci.-Pol. 33(4), 852–861 (2015)

    Article  Google Scholar 

  28. F. He, W. Ren, G. Liang, P. Shi, X. Wu, X. Chen, Structure and dielectric properties of barium titanate thin films for capacitor applications. Ceram. Int. 39, S481–S485 (2013)

    Article  CAS  Google Scholar 

  29. B. Bajac, J. Vukmirovic, D. Tripkovic, E. Djurdjic, J. Stanojev, Ž Cvejic, B. Škoric, V.V. Srdic, Structural characterization and dielectric properties of BaTiO3 thin films obtained by spin coating. Process. Appl. Ceramics 8(4), 219–224 (2014)

    Article  CAS  Google Scholar 

  30. Y. Gao, M. Yuan, X. Sun, J. Ouyang, In situ preparation of high quality BaTiO3 dielectric films on Si at 350–500 C. J. Mater. Sci. 28(1), 337–343 (2017)

    CAS  Google Scholar 

  31. Schumann, T., Zhu, X., Neff, J., Hebard, A., Zmuda, H., & Yoon, Y. K. (2018). Solely Calcine Controlled Ferroelectricity and Resistivity of Barium Titanate Thin Films and Their Advanced Memory Applications. In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 1402–1406.

  32. M. Tahir, S. Riaz, U. Khan, S.S. Hussain, A. Nairan, A. Akbar, S. Naseem, Enhanced structural and magnetic ordering in as-synthesized Ca doped bismuth iron oxide nanoceramics. J. Alloy. Compd. 832, 154725 (2020)

    Article  CAS  Google Scholar 

  33. Pan, L., & Zhu, G. (2016). Perovskite materials: synthesis, characterisation, properties, and applications. BoD–Books on Demand.

  34. M. Guo, G. Wang, Y. Zhao, H. Li, K. Tang, Y. Zhao, K. Burgess, Preparation of Nano-ZrO2 powder via a microwave-assisted hydrothermal method. Ceram. Int. 47(9), 12425–12432 (2021)

    Article  CAS  Google Scholar 

  35. I. Sanaullah, H.N. Khan, A. Sajjad, S. Khan, A.N. Sabri, S. Naseem, S. Riaz, Improved osteointegration response using high strength perovskite BaTiO3 coatings prepared by chemical bath deposition. J. Mech. Behav. Biomed. Mater.Behav. Biomed. Mater. 138, 105635 (2023)

    Article  CAS  Google Scholar 

  36. H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  37. V.V. Deshmane, A.V. Patil, Effects of additives on structural and magnetic properties of iron oxide. Int. J. Nanosci.Nanosci. 19(04), 1950025 (2020)

    Article  CAS  Google Scholar 

  38. S. Riaz, S. Naseem, Effect of reaction temperature and time on the structural properties of Cu (In, Ga) Se2 thin films deposited by sequential elemental layer technique. J Mater Sci Technol-Shenyang 23(4), 499 (2007)

    CAS  Google Scholar 

  39. L. Xu, G. Zheng, J. Miao, F. Xian, Dependence of structural and optical properties of sol–gel derived ZnO thin films on sol concentration. Appl. Surf. Sci. 258(19), 7760–7765 (2012)

    Article  CAS  Google Scholar 

  40. G. Madras, B.J. McCoy, Transition from nucleation and growth to Ostwald ripening. Chem. Eng. Sci. 57(18), 3809–3818 (2002)

    Article  CAS  Google Scholar 

  41. A. Awan, M. Nadeem, S. Riaz, S.S. Hussain, F. Majid, S. Naseem, Molarity dependent oscillatory structural and magnetic behavior of phase pure BiFeO3 thin films: sol–gel approach. Ceram. Int. 45(4), 5111–5123 (2019)

    Article  CAS  Google Scholar 

  42. G. Arandhara, J. Bora, P.K. Saikia, Effect of pH on the crystallite size, elastic properties and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Mater. Chem. Phys. 241, 122277 (2020)

    Article  CAS  Google Scholar 

  43. A. Moghtada, R. Ashiri, Enhancing the formation of tetragonal phase in perovskite nanocrystals using an ultrasound assisted wet chemical method. Ultrason. Sonochem.. Sonochem. 33, 141–149 (2016)

    Article  CAS  Google Scholar 

  44. Rabe, K. M., Ahn, C. H., & Triscone, J. M. (Eds.). (2007). Physics of ferroelectrics: a modern perspective (Vol. 105). Springer Science & Business Media; Usher, T. M., Kavey, B., Caruntu, G., & Page, K. (2020). Effect of BaCO3 impurities on the structure of BaTiO3 nanocrystals: implications for multilayer ceramic capacitors. ACS Applied Nano Materials3(10), 9715–9723.

  45. T. Ishii, H. Wakita, K. Ogasawara, Y.S. Kim, The DV-Xα molecular-orbital calculation method. Springer International Publishing. (2015)

  46. M. Weller, M.T. Weller, T. Overton, J. Rourke, F. Armstrong, Inorganic chemistry (Oxford University Press, USA, 2014)

    Google Scholar 

  47. B. Kaufmann, P. Christen, Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal.. Anal. 13(2), 105–113 (2002)

    Article  CAS  Google Scholar 

  48. V. Kaushik, V. Kumar, D. Kumar, R. Kumar, V. Singh, M. Kumar, S.K. Sharma, Effect of aging on microstructural and optical properties of sol-gel dip coated BaTiO3 thin films. Appl. Surface Sci. Adv. 16, 100418 (2023)

    Article  Google Scholar 

  49. S. Halder, T. Schneller, R. Waser, S.B. Majumder, Electrical and optical properties of chemical solution deposited barium hafnate titanate thin films. Thin Solid Films 516(15), 4970–4976 (2008)

    Article  CAS  Google Scholar 

  50. Fox, M. (2002). Optical properties of solids.

  51. C.E. Kim, P. Moon, S. Kim, J.M. Myoung, H.W. Jang, J. Bang, I. Yun, Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films. Thin Solid Films 518(22), 6304–6307 (2010)

    Article  CAS  Google Scholar 

  52. B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 10244 (1988)

    Article  CAS  Google Scholar 

  53. E.K. Barimah, A. Boontan, D.P. Steenson, G. Jose, Infrared optical properties modulation of VO2 thin film fabricated by ultrafast pulsed laser deposition for thermochromic smart window applications. Sci. Rep. 12(1), 11421 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. S. Riaz, M. Abutalib, S. Naseem, Structural, optical, and dielectric properties of aluminum oxide nanofibers synthesized by a lower-temperature sol-gel approach. J. Electron. Mater. 45(10), 5185–5197 (2016)

    Article  CAS  Google Scholar 

  55. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A.N. Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Market. Res. 8(2), 2021–2030 (2019)

    CAS  Google Scholar 

  56. Jandow, N. N., Habubi, N. F., Al-Baidhany, I. A., & Qaeed, M. A. (2019). Annealing Effects on Band Tail Width, Urbach Energy and Optical Parameters of Fe2O3: Ni Thin Films Prepared by Chemical Spray Pyrolysis Technique. International Journal of Nanoelectronics & Materials12(1).

  57. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  58. Barsoukov, E., & Macdonald, J. R. (2005). Impedance Spectroscopy Theory, Experiment, and Applications. (Ed. 2nd). John Wiley &Sons, 595.

  59. N. Kumari, V. Kumar, S.K. Singh, Synthesis, structural and dielectric properties of Cr3+ substituted Fe3O4 nano-particles. Ceram. Int. 40(8), 12199–12205 (2014)

    Article  CAS  Google Scholar 

  60. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)

    Article  CAS  Google Scholar 

  61. Y.F. Cui, Y.G. Zhao, L.B. Luo, J.J. Yang, H. Chang, M.H. Zhu, T.L. Ren, Dielectric, magnetic, and magnetoelectric properties of La and Ti codoped BiFeO 3. Appl. Phys. Lett. 97(22), 222904 (2010)

    Article  Google Scholar 

  62. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0. 6Cu0. 3Zn0. 1Fe2O4/Ba0. 9Sr0. 1Zr0. 1Ti0. 9O3 composite ceramics. Compos. B Eng. 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  63. F. Hcini, S. Hcini, M.A. Wederni, B. Alzahrani, H. Al Robei, K. Khirouni, S. Zemni, M.L. Bouazizi, Structural, optical, and dielectric properties for Mg0· 6Cu0· 2Ni0· 2Cr2O4 chromite spinel. Physica B B 624, 413439 (2022)

    Article  CAS  Google Scholar 

  64. R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Influence of core size on the multiferroic properties of CoFe2O4@ BaTiO3 core shell structured composites. Ceram. Int. 44, S84–S87 (2018)

    Article  CAS  Google Scholar 

  65. Y. Gao, J. Wang, L. Wu, S. Bao, Y. Shen, Y. Lin, C. Nan, Tunable magnetic and electrical behaviors in perovskite oxides by oxygen octahedral tilting. Sci. China Mater. 58(4), 302–312 (2015)

    Article  CAS  Google Scholar 

  66. C. Yang, J.S. Jiang, F.Z. Qian, D.M. Jiang, C.M. Wang, W.G. Zhang, Effect of Ba doping on magnetic and dielectric properties of nanocrystalline BiFeO3 at room temperature. J. Alloy. Compd. 507(1), 29–32 (2010)

    Article  CAS  Google Scholar 

  67. Verma, K. C., Ram, M., Singh, J., & Kotnala, R. K. (2011). Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3 (Fe0.012Ti0.988) O3 nanoparticles. Journal of Alloys and Compounds509(15), 4967–4971.

  68. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, Enhancement of magnetoelectric properties of (1–x) Mn0. 5Zn0. 5Fe2O4-xBa0. 85Sr0. 15Ti0. 9Hf0. 1O3 composite ceramics. J. Alloy. Compd. 795, 501–512 (2019)

    Article  CAS  Google Scholar 

  69. S. Khan, S. Riaz, F. Arshad, M. Azhar, N. Ahmad, H. Noor, S. Atiq, S. Naseem, Role of Ca doping on oxygen vacancy production in modulating dielectric, ferroelectric and magnetic polarization in BaTiO3 thin films. J. Market. Res. 16, 993–1007 (2022)

    CAS  Google Scholar 

  70. Sharma, G., Kumar, A., & Dhiman, P. (2021). Ferrite: Nanostructures with Tunable Properties and Diverse Applications. (Vol 112). Materials Research Forum LLC, 378.

  71. M.D. Hossain, M.N.I. Khan, A. Nahar, M.A. Ali, M.A. Matin, S.M. Hoque, A.T.M.K. Jamil, Tailoring the properties of Ni-Zn-Co ferrites by Gd3+ substitution. J. Magn. Magn. Mater.Magn. Magn. Mater. 497, 165978 (2020)

    Article  CAS  Google Scholar 

  72. S. Khalid, S. Riaz, S. Naeem, A. Akbar, S.S. Hussain, Y.B. Xu, S. Naseem, Spin polarization and magneto-dielectric coupling in Al-modified thin iron oxide films-microwave mediated sol-gel approach. J. Ind. Eng. Chem. 103, 49–66 (2021)

    Article  CAS  Google Scholar 

  73. S.B. Bukhari, M. Imran, M. Bashir, S. Riaz, S. Naseem, Room temperature stabilized TiO2 doped ZrO2 thin films for teeth coatings–A sol-gel approach. J. Alloy. Compd. 767, 1238–1252 (2018)

    Article  CAS  Google Scholar 

  74. K. Pubby, K.V. Babu, S.B. Narang, Magnetic, elastic, dielectric, microwave absorption and optical characterization of cobalt-substituted nickel spinel ferrites. Mater. Sci. Eng. B 255, 114513 (2020)

    Article  CAS  Google Scholar 

  75. Waqas, M., Niaz, S., Batoo, K. M., Khalid, S., Atiq, S., Xu, Y. B., Naseem, S., & Riaz, S. (2023). Robust Ferromagnetism and Magneto-Dielectric Anomalies in (Al, Cr) co-doped Iron Oxide Thin Films-Microwave Mediated Sol-Gel Approach. Journal of Materials Research and Technology.

  76. TD charge carriers] Kumar, P., Kumar, P., Kumar, A., Meena, R. C., Tomar, R., Chand, F., & Asokan, K. (2016). Structural, morphological, electrical and dielectric properties of Mn doped CeO2. Journal of Alloys and Compounds672, 543-548

  77. Ben, L., & Sinclair, D. C. (2011). Anomalous Curie temperature behavior of A-site Gd-doped BaTiO3 ceramics: The influence of strain. Applied Physics Letters98(9).

  78. T. Walther, N. Quandt, R. Köferstein, R. Roth, M. Steimecke, S.G. Ebbinghaus, BaTiO3–CoFe2O4–BaTiO3 trilayer composite thin films prepared by chemical solution deposition. J. Eur. Ceram. Soc. 36(3), 559–565 (2016)

    Article  CAS  Google Scholar 

  79. Caruta, B. M. (2006). Trends in materials science research. Nova Publishers.

  80. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sens. Actuators, B Chem. 241, 1170–1178 (2017)

    Article  CAS  Google Scholar 

  81. A. Abdel Aal, T. Hammad, M. Zawrah, I. Battisha, A. AbouHammad, FTIR study of nanostructure perovskite BaTiO3 doped with both Fe^3+ and Ni^2+ Ions prepared by sol-gel technique. Acta Phys. Pol., A 126(6), 1318–1321 (2014)

    Article  Google Scholar 

  82. M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, 2001)

    Book  Google Scholar 

  83. R. Thomas, V.K. Varadan, S. Komarneni, D.C. Dube, Diffuse phase transitions, electrical conduction, and low temperature dielectric properties of sol–gel derived ferroelectric barium titanate thin films. J. Appl. Phys. 90(3), 1480–1488 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Higher Education Commission and Punjab University for the financial support. The author K M Batoo would like to thank Researchers Supporting Project No. (RSP2024R148), King Saud University, Riyadh, Saudi Arabia for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzad Naseem.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, M., Niaz, S., Batoo, K.M. et al. Stirring-mediated dielectric and ferroelectric response in perovskite BaTiO3 for multilayer capacitor applications. J. Korean Ceram. Soc. (2024). https://doi.org/10.1007/s43207-024-00370-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43207-024-00370-4

Keywords

Navigation