Skip to main content
Log in

Nanofructosome encapsulated CalB enzyme immobilized silica-coated magnetic nanoparticles for rapid enzymatic hydrolysis and acylation

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study reports the preparation of Candida Antarctic lipase B (CalB) enzyme and nanofructosome encapsulated CalB enzyme (CalB@NF) immobilized silica coated magnetic nanoparticles (Si-MNPs) and demonstration of the enzymatic hydrolysis and acylation against p-nitrophenyl butyrate (p-NPB) and benzoic anhydride. Si-MNPs was prepared 60 nm of particle size with spherical shape, and the immobilization of CalB and CalB@NF was coupled by chlorosilane linker on the surface of Si-MNPs. The quantitative determination of CalB in Si-MNPs@CalB and Si-MNPs@CalB@NF was followed by Bradford assay. Various enzymatic kinetic parameters such as Km, Vmax, and Kcat were calculated using the Lineweaver-Burk equation and Michaelis-Menten kinetics. The hydrolysis of p-NPB with Si-MNPs@CalB@NF and Si-MNPS@CalB confirmed their utilization as effective catalysts. Furthermore, all four samples of native CalB, CalB@NF, Si-MNPs@CalB, and Si-MNPs@CalB@NF were successfully acylated to benzyl benzoate after column separation, and showed more than 99% conversion efficiency. The stability for pH and temperature of Si-MNPs@CalB and Si-MNPs@CalB@NF was optimized at 8 and 45 ℃, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H.R. Lee, M.I. Kim, S.E. Hong, J.Y. Choi, Y.M. Kim, K.R. Yoon, S.H. Lee, S.H. Ha, Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group, J. Anal. Sci. Technol. 105–113 (2016)

  2. B. Staucha, S.J. Fisherc, M. Cianci, Open and closed states of candida antarctica lipase B: protonation and the mechanism of interfacial activation. J. Lipid Res. 56(12), 2348–2358 (2015)

    Article  Google Scholar 

  3. H.Z. Maa, X.W. Yub, C. Songa, Q. Xuea, B. Jianga, Immobilization of candida antarctica lipase B on epoxy modified silica by sol-gel process. J. Mol. Catal. B: Enzym. 127, 76–81 (2016)

    Article  Google Scholar 

  4. K.E. Jaeger, T. Eggert, Lipases for biotechnology. Curr. Opin. Biotechnol. 13, 390–397 (2002)

    Article  CAS  Google Scholar 

  5. F.L.C. Almeida, M.P.J. Castro, B.M. Travalia, M.B.S. Forte, Trends in lipase immobilization: bibliometric review and patent analysis. Process. Biochem. 110, 37–51 (2021)

    Article  CAS  Google Scholar 

  6. J.C. Cruz, K. Würges, M. Kramer, P.H. Pfromm, M.E. Rezac, P. Czermak, Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media, Methods Mol. Biol. 743 (2011)

  7. E.T. Önera, L. Hernándezb, J. Combiec, Review of levan polysaccharide: from a century of past experiences to future prospects, Biotechnol. Adv. 34, 827–844 (2016)

    Google Scholar 

  8. P. Wiecinska, A. Zurawska, P. Falkowski, D.Y. Jeong, M. Szafran, Sweet ceramics: how saccharide–based compounds have changed colloidal processing of ceramic materials. J. Korean Ceram. Soc. 57, 231–245 (2020)

    Article  CAS  Google Scholar 

  9. C.S. Hundschell, F. Jakob, M. Wagemans, Molecular weight dependent structure of the exopolysaccharide levan. Int. J. Biol. Macromol. 161, 398–405 (2020)

    Article  CAS  Google Scholar 

  10. E.M. Anderson, K.M. Larsson, O. Kirk, One biocatalyst–many applications: the use of candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16, 181–204 (2009)

    Article  Google Scholar 

  11. D. Rotticci, J.C. Rotticci-Mulder, S. Denman, T. Norin, K. Hult, Improved enantioselectivity of a lipase by rational protein engineering, ChemBioChem. 2, 766–770 (2001)

  12. J.H. Sohn, J.H. Bae, Levan-protein nanocomposites and their uses, KR Patent 1024159780000 (2022)

  13. S.A. Arvidson, B.T. Rinehart, Francis Gadala-Maria,concentration regimes of solutions of levan polysaccharide from Bacillus sp. Carbohydr. Polym. 65, 144–149 (2006)

    Article  CAS  Google Scholar 

  14. R. Srikanth, C.H.S.S. Sundhar Reddy, G. Siddartha, M.J. Ramaiah, K.B. Uppuluri, Review on production, characterization and applications of microbial levan. Carbohydr. Polym. 14, 0144–8617 (2014)

    Google Scholar 

  15. M.D. Kedzia, M. Ostrowska, A. Lewinska, Lukasazewicz recent developments and applications of microbial levan, a vrsatile polysaccharide-based biopolymer. Molecules. 28, 5407–5430 (2023)

    Article  Google Scholar 

  16. H.J. Noh, W.Y. Lee, Synthesis of levan using recombinant levansucrase lmmobilized onto Fe3O4 magnetic nanoparticles. J. Korea Academia Industrial Soc. 24, 508–519 (2023)

    Article  Google Scholar 

  17. R.A. Sheldon, Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349, 1289–1307 (2007)

    Article  CAS  Google Scholar 

  18. S. Sharma, S. Gupta, S.K. Princy, A. Arya, Kaur, Enzyme immobilization: implementation of nanoparticles and an insight into polystyrene as the contemporary immobilization matrix. Process. Biochem. 120, 22–34 (2022)

    Article  CAS  Google Scholar 

  19. C.H. Lee, E.S. Jin, J.H. Lee, E.T. Hwang, Immobilization and stabilization of enzyme in Biomineralized Calcium Carbonate Microspheres. Front. Bioeng. Biotechnol. 8, 553–591 (2020)

    Article  Google Scholar 

  20. P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules. 19, 14139–14194 (2014)

    Article  Google Scholar 

  21. O. Yemul, T. Imae, Covalent-bonded immobilization of lipase on poly(phenylene sulfide) dendrimers and their hydrolysis ability. Biomacromolecules. 6, 2809–2814 (2005)

    Article  CAS  Google Scholar 

  22. T. Jesionowski, J. Zdarta, B. Krajewska, Enzyme immobilization by adsorption: a review. Adsorption. 20, 801–821 (2014)

    Article  CAS  Google Scholar 

  23. K.H. Won, S.B. Kim, K.J. Kim, H.W. Park, S.J. Moon, Optimization of lipase entrapment in Ca-alginate gel beads. Process. Biochem. 40, 2149–2154 (2005)

    Article  CAS  Google Scholar 

  24. U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38, 453–468 (2009)

    Article  CAS  Google Scholar 

  25. Y. Wu, Y. Wang, G. Luo, Y. Dai, In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol. 100, 3459–3464 (2009)

    Article  CAS  Google Scholar 

  26. J.W. Lee, D.K. Kim, Carboxymethyl group activation of dextran cross–linked superparamagnetic iron oxide nanoparticles. J. Korean Ceram. Soc. 58, 106–115 (2020)

    Article  Google Scholar 

  27. A. Nikmah, A. Taufiq, A. Hidayat, Synthesis and characterization of Fe3O4/SiO2 nanocomposites. IOP Conf. Ser. : Earth Environ. Sci. 276, 012046 (2019)

    Google Scholar 

  28. D. Yang, J. Hu, S. Fu, Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach. J. Phys. Chem. C 113, 7646–7651 (2009)

    Article  CAS  Google Scholar 

  29. C.G.C.M. Netto, H.E. Toma, L.H. Andrade, Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J. Mol. Catal. B: Enzym. 85–86, 71–92 (2013)

    Article  Google Scholar 

  30. J.L. Campbell, J. Arora, S.F. Cowell, A. Garg, P. Eu, S.K. Bhargava, V. Bansal, “Quasi-cubic magnetite/silica core-shell nanoparticles as enhanced MRI contrast agents for cancer imaging” PLOS ONE 6 e21857 (2011)

  31. P. Sricharoen, S. Chanthai, N. Lamaiphan, C. Sakaew, N. Limchoowong, P. Nuengmatcha, W.C. Oh, Sono–synthesized Fe3O4–GO–NH2 nanocomposite for highly efficient ultrasound–assisted magnetic dispersive solid–phase microextraction of hazardous dye Congo red from water samples. J. Korea Ceram. Soc. 58, 201–211 (2021)

    Article  CAS  Google Scholar 

  32. F. Sharifianjazi, M. Irani, A. Esmaeilkhanian, L. Bazli, M.S. Asl, H.W. Jang, S.Y. Kim, S. Ramakrishna, M. Shokouhimehre, R.S. Varma, Polymer incorporated magnetic nanoparticles: applications for magnetoresponsive targeted drug delivery. Mater. Sci. Engineering: B 272, 115358 (2021)

    Article  CAS  Google Scholar 

  33. N. Lamaiphan, C. Sakaew, P. Sricharoen, P. Nuengmatcha, S. Chanthai, N. Limchoowong, Highly efficient ultrasonic-assisted preconcentration of trace amounts of Ag(I), Pb(II), and Cd(II) ions using 3-mercaptopropyl trimethoxysilane-functionalized graphene oxide–magnetic nanoparticles. J. Korea Ceram. Soc. 58, 314–329 (2021)

    Article  CAS  Google Scholar 

  34. A. Noypha, Y. Areerob, S. Chanthai, P. Nuengmatcha, Fe2O3-graphene anchored Ag nanocomposite catalyst for enhanced sonocatalytic degradation of methylene blue. J. Kor Ceram. Soc. 58, 297–306 (2021)

    Article  CAS  Google Scholar 

  35. K.H. Kang, J.S. Choi, J.H. Nam, S.C. Lee, K.J. Kim, S.W. Lee, J.H. Chang, Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator, J. Phys. Chem. B 536–543 (2009)

  36. M. Zhang, B.L. Cushing, C.J. O’Connor, Synthesis and characterization of monodisperse ultra-thin silica-coated magnetic nanoparticles. J. Nanotechnol. 19, 085601 (2008)

    Article  Google Scholar 

  37. M.S. Park, A.R. Choi, S.K. Kim, W.Y. Shim, Y.J. Kim, Study of SiO2 coating and carboxylic surface–modifcation on Mg–based inorganic fber by one–step refux reaction. J. Korean Ceram. Soc. 59, 869–875 (2022)

    Article  CAS  Google Scholar 

  38. S. Palakurthy, P.A. Azeem, K.V. Reddy, Sol–gel synthesis of soda lime silica–based bioceramics using biomass as renewable sources. J. Korean Ceram. Soc. 59, 76–85 (2022)

    Article  CAS  Google Scholar 

  39. L.R. Arcot, M. Lundahl, O.J. Rojas, J. Laine, Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS–EDC coupling. Cellulose. 21, 4209–4218 (2014)

    Article  CAS  Google Scholar 

  40. S. Gámez, A. Magerat, E. Torre, E.M. Gaigneaux, functionalization of carbon black for Ru complexation towards the oxidative cleavage of oleic acid. J. Mol. Catal. 541, 113097 (2023)

    Article  Google Scholar 

  41. M.J.E. Fischer, Amine coupling through EDC/NHS: a practical approach. Methods Mol. Biol. 627, 55–73 (2010)

    Article  CAS  Google Scholar 

  42. P. Tengvall, E. Jansson, A. Askendal, P. Thomsen, C. Gretzer, Preparation of multilayer plasma protein films on silicon by EDC/NHS coupling chemistry. Colloids Surf. B 28, 261–272 (2003)

    Article  CAS  Google Scholar 

  43. H.Y. Lee, W.Y. Jang, J.H. Chang, Reusable and rapid esterolysis of nitrophenyl alkanoates with CalB enzyme–immobilized magnetic nanoparticles. J. Korean Ceram. Soc. 59, 527–535 (2022)

    Article  CAS  Google Scholar 

  44. M. Song, J.H. Chang, Thermally stable and reusable ceramic encapsulated and cross-linked CalB enzyme particles for rapid hydrolysis and esterification. Int. J. Mol. Sci. 23, 2459 (2022)

    Article  CAS  Google Scholar 

  45. N.J. Kruger, The Bradford method for protein quantitation, The Protein Protocols Handbook 17–24 (2009)

  46. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7, 248–254 (1976)

    Article  Google Scholar 

  47. A. Mobinikhaledi, H. Moghanian, Z. Souri, Efficient synthesis of 2-amino-4H-chromene derivatives in the presence of piperazine-functionalized Fe3O4/SiO2 magnetic nanoparticles as a new heterogeneous reusable catalyst under solvent-free conditions. Lett. Org. Chem. 11, 432–439 (2014)

    Article  CAS  Google Scholar 

  48. S.Y. Lee, C.Y. Ahn, J.H. Lee, J.H. Lee, J.H. Chang, Rapid and selective separation for mixed proteins with thiol functionalized magnetic nanoparticles. Nanoscale Res. Lett. 7, 279 (2012)

    Article  Google Scholar 

  49. J.H. Lee, J.H. Chang, Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles. Nanoscale Res. Lett. 9, 664 (2014)

    Article  Google Scholar 

  50. A. Ulu, S.A.A. Noma, S. Koytepe, B. Ates, Chloro-modified magnetic Fe3O4@MCM-41 core–shell nanoparticles for L-asparaginase lmmobilization with improved catalytic activity, reusability, and storage stability. Appl. Biochem. Biotechnol. 187, 938–956 (2019)

    Article  CAS  Google Scholar 

  51. W.Y. Jang, J.H. Sohn, J.H. Chang, Thermally stable and reusable silica and nano-fructosome encapsulated CalB enzyme particles for rapid enzymatic hydrolysis and acylation. Int. J. Mol. Sci. 24, 9838 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01493802)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Ho Chang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest with this work.

Ethical approval

This paper meets the ethical standards of this journal.

Research involving human and animals’ rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors agree with the review of this paper in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Jang, W. & Chang, J.H. Nanofructosome encapsulated CalB enzyme immobilized silica-coated magnetic nanoparticles for rapid enzymatic hydrolysis and acylation. J. Korean Ceram. Soc. 61, 126–136 (2024). https://doi.org/10.1007/s43207-023-00355-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00355-9

Keywords

Navigation