Skip to main content
Log in

Synthesis of silica nanopowder from hydrochloric acid and potassium silicate precursor using Taylor-vortex reactor

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study focuses on the synthesis and surface modification of silica particles using round-bottom flask and Taylor-vortex reactors with varying stirring speeds and K2SiO3 concentrations. The successful surface modification with MTCS is confirmed through FT–IR analysis, indicating the covalent attachment of methyl groups on the silica surface. Oil adsorption capacity testing reveals the influence of reactor type and stirring speed on particle performance. The Taylor-vortex reactor consistently displays higher homogeneity and oil adsorption capacity at lower stirring speeds, thanks to controlled hydrodynamic conditions. The FT–IR analysis also highlights characteristic oscillations and cohesion of the –CH3 groups after MTCS treatment. The findings underscore the importance of reactor selection and parameter optimization in tailoring silica particles for specific applications. This study contributes valuable insights into silica particle synthesis and modification, with implications in materials science and environmental technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.U. Hur, J.S. Choi, S.-C. Choi, G.S. An, Highly dispersible Fe3O4 nanoparticles via anionic surface modification. J. Korean Ceram. Soc. 57(1), 80 (2020). https://doi.org/10.1007/s43207-019-00001-3

    Article  CAS  Google Scholar 

  2. C.-M. Kai, C. Kong, F.-J. Zhang, D.-C. Li, Y.-R. Wang, W.-C. Oh, In situ growth of CdS spherical nanoparticles/Ti3C2 MXene nanosheet heterojunction with enhanced photocatalytic hydrogen evolution. J. Korean Ceram. Soc. 59, 302 (2022). https://doi.org/10.1007/s43207-021-00158-w

    Article  CAS  Google Scholar 

  3. L. Kumaresan, G. Shanmugavelayutham, S. Surendran, U. Sim, Thermal plasma arc discharge method for high-yield production of hexagonal AlN nanoparticles: synthesis and characterization. J. Korean Ceram. Soc. 59, 338 (2022). https://doi.org/10.1007/s43207-021-00177-7

    Article  CAS  Google Scholar 

  4. A. J. Aravind Jithin, S. K. Panigrahi, P. Sasikumar, K. Shreedhar Rao, G. Krishnakumar, Ablative properties, thermal stability, and compressive behaviour of hybrid silica phenolic ablative composites. Polym. Degrad. Stabil. 203, 110063 (2022). https://doi.org/10.1016/j.polymdegradstab.2022.110063

  5. T.N. Rao, I. Hussain, B.H. Koo, Enhanced thermal properties of silica nanoparticles and chitosan bio-based intumescent flame retardant Polyurethane coatings. Mater. Today: Proc. 27(1), 369–375 (2022). https://doi.org/10.1016/j.matpr.2019.11.153

    Article  CAS  Google Scholar 

  6. C. Sanchez, P. Belleville, M. Popalld, L. Nicole, Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40, 696–753 (2011). https://doi.org/10.1039/C0CS00136H

    Article  CAS  Google Scholar 

  7. A.A. Nayl, A.I. Abd-Elhamid, A.A. Alyc, S. Brase, Recent progress in the applications of silica-based nanoparticles. R. Soc. Ch. 12, 13706–13726 (2022). https://doi.org/10.1039/d2ra01587k

    Article  CAS  Google Scholar 

  8. C. Heng, M. Liu, P. Wang, K. Wang, X. Zheng, D. Fan, J. Hui, X. Zhang, Y. Wei, Preparation of silica nanoparticles based multifunctional therapeutic systems via one-step mussel inspired modification. Chem. Eng. J. 296, 268–276 (2016). https://doi.org/10.1016/j.cej.2016.03.079

    Article  CAS  Google Scholar 

  9. M. Mirzaei, M.B. Zarch, M. Darroudi, K. Sayyadi, S.T. Keshavarz, J. Sayyadi, A. Fallah, H. Maleki, Silica mesoporous structures: effective nanocarriers in drug delivery and nanocatalysts. Appl. Sci. 10, 7533 (2020). https://doi.org/10.3390/app10217533

    Article  CAS  Google Scholar 

  10. A. Mohan, A. Jaison, Y.-C. Lee, Emerging trends in mesoporous silica nanoparticle-based catalysts for CO2 utilization reactions. Inorg. Chem. Front. 10, 3171–3194 (2023). https://doi.org/10.1039/D3QI00378G

    Article  CAS  Google Scholar 

  11. M. Seenivasan, C. C. Yang, S. H. Wu, W. C. Chien, Y. S. Wu, R. Jose, S. J. Lue, Using a CouetteeTaylor vortex flow reactor to prepare a uniform and highly stable Li[Ni0.80Co0.15Al0.05]O2 cathode material. J. Alloy. Compd. 925, 8388 (2020). https://doi.org/10.1016/j.jallcom.2020.157594

  12. M. Schrimpf, J. Esteban, H. Warmeling, T. Färber, A. Behr, A.J. Vorhol, Taylor–Couette reactor: principles, design, and applications. AlChE. J. 67, e17228 (2021). https://doi.org/10.1002/aic.17228

    Article  CAS  Google Scholar 

  13. C.Y. Jung, J.S. Kim, T.S. Chang, S.T. Kim, H.J. Lim, S.M. Koo, One-step ssynthesis of sstructurally controlled silicate particles from sodium silicates using a simple precipitation process. Langmuir 26(8), 5456–5461 (2010). https://doi.org/10.1021/la904572y

    Article  CAS  Google Scholar 

  14. U. Zulfiqar, T. Subhani, S.W. Husain, Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol–Gel Sci. Teachnol. (2016). https://doi.org/10.1007/s10971-015-3950-7

    Article  Google Scholar 

  15. R. M. Ulum, Natalin, R. Riastuti, W. Mayangsari, A. B. Prasetyo, J. W. Soedarsono, A. Maksum, Pyro-hydrometallurgy routes to recover silica from indonesian ferronickel slag. Recycling. 8(1), 13 (2023). https://doi.org/10.3390/recycling8010013

  16. H.H. Nguyen, T.T.H. Nguyen, Y.S. Cho, Fabrication and surface modification of macroporous silica fibers by electrospinning for super adsorbent of oil. Korean J. Met. Mater. 60(10), 732–743 (2022). https://doi.org/10.3365/KJMM.2022.60.10.732

    Article  CAS  Google Scholar 

  17. S. Musić, N. Filipović-Vinceković, L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 28(01), 89–94 (2011). https://doi.org/10.1590/S0104-66322011000100011

    Article  Google Scholar 

  18. I. M. Joni, Rukiah, C. Panatarani, Synthesis of silica particles by precipitation method of sodium silicate: effect of temperature, pH and mixing technique. AIP Confer. Proc. 2219, 080018 (2020). https://doi.org/10.1063/5.0003074

  19. G. B. Alexander, R. K. Iler, G. W. Sears, Potassium silicate solutions and their preparation, US Patent 2,933,371 (1960)

  20. X. Cai, R.Y. Hong, L.S. Wang, X.Y. Wang, H.Z. Li, Y. Zheng, D.G. Wei, Synthesis of silica powders by pressured carbonation. Chem. Eng. J. 151, 380–386 (2009). https://doi.org/10.1016/j.cej.2009.03.060

    Article  CAS  Google Scholar 

  21. H. J. Jang, M. J. Chang, K. H. Nam, D.-W. Chung, Surface modification of nano silica prepared by Sol–gel process and subsequent application towards Gas-barrier films. Appl. Chem. Eng. 30(1), 68–73 (2019). https://doi.org/10.14478/ace.2018.1106

  22. S.K. Song, J.H. Kim, K.S. Hwang, K.R. Ha, Spectroscopic analysis of silica nanoparticles modified with silane coupling agent. Korean Chem. Eng. Res. 49(2), 181–186 (2011). https://doi.org/10.9713/kcer.2011.49.2.181

    Article  CAS  Google Scholar 

  23. K. Chen, P. Li, Xing. Li, C. Liao, Xian. Li, Y. Zuo, Effect of silane coupling agent on compatibility interface and properties of wheat straw/polylactic acid composites. Int. J. Bio. Macro. 182, 2108–2116 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.207

  24. L. Dashairya, D.D. Barik, P. Saha, Methyltrichlorosilane functionalized silica nanoparticles-treated superhydrophobic cotton for oil–water separation. J. Coat. Technol. Res. 16, 1021–1032 (2019). https://doi.org/10.1007/s11998-018-00177-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A1A03015562) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00250648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Sang Cho.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This paper meets the ethical standards of this journal.

Consent to participate

All authors agree with the review of this paper in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, HH., Park, SH., Tran, QH. et al. Synthesis of silica nanopowder from hydrochloric acid and potassium silicate precursor using Taylor-vortex reactor. J. Korean Ceram. Soc. 61, 178–188 (2024). https://doi.org/10.1007/s43207-023-00345-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00345-x

Keywords

Navigation