Skip to main content
Log in

Magnetic, thermoelectric properties and magnetocaloric effect of Pr0.7Ba0.3MnO3 perovskite: experimental, DFT calculation and Monte Carlo simulations

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The magnetic, electronic, structural, thermoelectric properties and magnetocaloric effect of Pr0.75Ba0.25MnO3 perovskite using, experimental, DFT calculation and Monte Carlo simulations were investigated. The ground state has half-metallic character. Our calculations also show that the Pr0.75Ba0.25MnO3 has a ferromagnetic behavior. Pr0.75Ba0.25MnO3 exhibits p-type behavior with dominant holes as the primary carriers, as indicated by its thermoelectric properties. This system exhibits a ferromagnetic–Paramagnetic transition. We have successfully obtained several properties, including magnetization, specific heat, variation of specific heat, magnetic entropy changes, relative cooling power, and the magnetic hysteresis cycle. For a magnetic field change of 5 T, the maximum value of the magnetic entropy change (∣ΔSmax∣) was approximately 12 J/kg.K, while the relative cooling power (RCP) reached 126 J/kg. The promising potential of the present system for magnetic refrigeration is evident due to its relatively large values of ∣ΔSmax∣ and RCP. Finally, the thermoelectric properties were given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Not applicable.

References

  1. G. Kadim, R. Masrour, A. Jabar, E.K. Hlil, Room-temperature large magnetocaloric, electronic and magnetic properties in La0.75Sr0.25MnO3 manganite: Ab initio calculations and Monte Carlo simulations. Phys. A: Stat. Mech. Appl. 573, 125936 (2021)

    Article  CAS  Google Scholar 

  2. G. Kadim, R. Masrour, A. Jabar, E.K. Hlil, First principal calculation and Monte Carlo simulations of the magnetocaloric effect, electronic and magnetic properties in perovskite oxide Pr0.65Sr0.35MnO3. IOP Conf. Ser.: Mater. Sci. Eng. 1160(1), 012010 (2021)

    Article  CAS  Google Scholar 

  3. Y. Xu, J. Dhainaut, J.P. Dacquin, J.F. Lamonier, H. Zhang, S. Royer, On the role of cationic defects over the surface reactivity of manganite-based perovskites for low temperature catalytic oxidation of formaldehyde. Appl. Catal. B Environ. 342, 123400 (2023)

    Article  Google Scholar 

  4. X. Yang, T. Wei, B. Chi, J. Pu, J. Li, Lanthanum manganite-based perovskite as a catalyst for co-production of ethylene and hydrogen by ethane dehydrogenation. J. Catal. 377, 629–637 (2019)

    Article  CAS  Google Scholar 

  5. S. Taran, B.K. Chaudhuri, S. Chatterjee, H.D. Yang, S. Neeleshwar, Y.Y. Chen, Critical exponents of the La0.7Sr0.3MnO3, La0.7Ca0.3MnO3, and Pr0.7Ca0.3MnO3 systems showing correlation between transport and magnetic properties. J. Appl. Phys. 98(10), 103903 (2005)

    Article  Google Scholar 

  6. F. Bern, M. Ziese, I. Vrejoiu, X. Li, P.A. van Aken, Magnetic and magnetotransport properties of ultrathin LaBaMnO3 epitaxial films embedded in SrRuO3. New J. Phys. 18(5), 053021 (2016)

    Article  Google Scholar 

  7. E. Brück, O. Tegus, X. Li, F.R. De Boer, K.H.J. Buschow, Magnetic refrigeration towards room-temperature applications. Phys. B 327(2–4), 431–437 (2003)

    Article  Google Scholar 

  8. A. Selmi, R. M’nassri, W. Cheikhrouhou-Koubaa, N.C. Boudjada, A. Cheikhrouhou, The effect of Co doping on the magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−xCoxO3 manganites. Ceram. Int. 41(6), 7723–7728 (2015)

    Article  CAS  Google Scholar 

  9. S.C. Maatar, R. M’nassri, W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, Structural, magnetic and magnetocaloric properties of La0.8Ca0.2−xNaxMnO3 manganites (0≤ x ≤ 02). J. Solid State Chem. 225, 83–88 (2015)

    Article  Google Scholar 

  10. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    Article  CAS  Google Scholar 

  11. P. Lampen, A. Puri, M.H. Phan, H. Srikanth, Structure, magnetic, and magnetocaloric properties of amorphous and crystalline La0.4Ca0.6MnO3+δ nanoparticles. J. Alloys Compd. 512(1), 94–99 (2012)

    Article  CAS  Google Scholar 

  12. S. Das, D. Dhak, M.S. Reis, V.S. Amaral, T.K. Dey, Room temperature giant magnetoimpedance in La0.7Ba0.15Sr0.15MnO3 compound. Mater. Chem. Phys. 120(23), 468–471 (2010)

    Article  CAS  Google Scholar 

  13. M.D. Daivajna, N. Kumar, V.P.S. Awana, B. Gahtori, J.B. Christopher, S.O. Manjunath, A. Rao, Electrical, magnetic and thermal properties of Pr0.6–xBixSr0.4MnO3 manganites. J. Alloys Compd. 588, 406–412 (2014)

    Article  CAS  Google Scholar 

  14. M. Oumezzine, S. Kallel, O. Pena, N. Kallel, T. Guizouarn, F. Gouttefangeas, M. Oumezzine, Correlation between structural, magnetic and electrical transport properties of barium vacancies in the La0.67Ba0.33−xxMnO3 (x = 0, 0.05, and 0.1) manganite. J. Alloys Compd. 582, 640–646 (2014)

    Article  CAS  Google Scholar 

  15. P. Bisht, A. Kumar, R.N. Mahato, Magnetic and magnetocaloric properties of the nanocrystalline Pr0.7Ba0.2Ca0.1MnO3 sample. AIP Adv. 11(1), 015239 (2021)

    Article  Google Scholar 

  16. C.R. Duarte de Freitas, M. Marques de Góis, R. Bezerra da Silva, J.A. Pereira da Costa, J.M. Soares, Mater. Res. 21, 1–7 (2018)

    Google Scholar 

  17. W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, J. Pierre, Q. Cai, W.B. Yelon, C. Dubourdieu, Neutron diffraction, NMR and magneto-transport properties in the Pr0.7Sr0.3MnO3 perovskite manganite. Phys. Status 191(1), 243–254 (2002)

    Article  CAS  Google Scholar 

  18. M. Chakraborty, P. Pal, B.R. Sekhar, Solid State Commun. 145, 197–200 (2008)

    Article  CAS  Google Scholar 

  19. M. Ellouze, W. Boujelben, H. Fuess, Rietveld refinement X-ray powder data of Pr0.7Ba0.3MnO3. Powder Diffr. 18(1), 29–31 (2003)

    Article  CAS  Google Scholar 

  20. M. Ellouze, W. Boujelben, A. Cheikhrouhou, H. Fuess, R. Madar, Vacancy effects on the crystallographic and magnetic properties in lacunar Pr0.7Ba0.3−xMnO3 oxides. Solid State Commun. 124(4), 125–130 (2002)

    Article  CAS  Google Scholar 

  21. H. Rached, D. Rached, M. Rabah, R. Khenata, A.H. Reshak, Full-potential calculation of the structural, elastic, electronic and magnetic properties of XFeO3 (X = Sr and Ba) perovskite. Phys. B 405(17), 3515–3519 (2010)

    Article  CAS  Google Scholar 

  22. D. Rached, M. Hichour, M. Rabah, S. Benalia, H. Rached, R. Khenata, Prediction study of the structural, elastic, electronic and optical properties of the antiperovskite BiNBa3. Solid State Commun. 149(45–46), 2002–2006 (2009)

    Article  CAS  Google Scholar 

  23. H. Benmhidi, H. Rached, D. Rached, M. Benkabou, Ab initio study of electronic structure, elastic and transport properties of fluoroperovskite LiBeF3. J. Electron. Mater. 46, 2205–2210 (2017)

    Article  CAS  Google Scholar 

  24. I. Bourachid, M. Caid, O. Cheref, D. Rached, H. Heireche, B. Abidri, N. Benkhettou, Insight into the structural, electronic, mechanical and optical properties of inorganic lead bromide perovskite APbBr3 (A = Li, Na, K, Rb, and Cs). Comput. Condens. Matter 24, e00478 (2020)

    Article  Google Scholar 

  25. H. Rached, S. Bendaoudia, D. Rached, Investigation of Iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193, 453–469 (2017)

    Article  CAS  Google Scholar 

  26. S. Al-Qaisi, M. Mushtaq, S. Alomairy, T.V. Vu, H. Rached, B.U. Haq, M.S. Al-Buriahi, First-principles investigations of Na2CuMCl6 (M = Bi, Sb) double perovskite semiconductors: materials for green technology. Mater. Sci. Semicond. Process. 150, 106947 (2022)

    Article  CAS  Google Scholar 

  27. K. Schwarz, P. Blaha, G.K. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  Google Scholar 

  28. G. Kadim, R. Masrour, A. Jabar, A comparative study between GGA, WC-GGA, TB-mBJ and GGA+ U approximations on magnetocaloric effect, electronic, optic and magnetic properties of BaMnS2 compound: DFT calculations and Monte Carlo simulations. Phys. Scr. 96(4), 045804 (2021)

    Article  CAS  Google Scholar 

  29. G. Kadim, R. Masrour, Thermoelectric, magneto-optic properties and magnetocaloric effect of PbS doped with Mn2+ ions. J. Inorg. Organomet. Polym. Mater. (2023). https://doi.org/10.1007/s10904-023-02677-x

    Article  Google Scholar 

  30. G. Kadim, R. Masrour, Density functional theory and Monte Carlo simulation insights into electronic structure and magnetic properties in HoSi and CeSi. Mater. Today Commun. 37, 107176 (2023)

    Article  CAS  Google Scholar 

  31. G. Kadim, R. Masrour, Effect of Zn-doping CdTe on the internal and external quantum efficiency: ab initio calculations. J. Korean Ceram. 60(6), 896–904 (2023)

    Article  CAS  Google Scholar 

  32. A. Jabar, R. Masrour, G. Kadim, M. Hamedoun, A. Hourmatallah, N. Benzakour, J. Kharbach, Intrinsic ferromagnetism in CoBr2 nanolayers: a DFT+U and Monte Carlo study. Commun. Theor. Phys. 73(11), 115702 (2021)

    Article  CAS  Google Scholar 

  33. G.K. Madsen, D.J. Singh, BoltzTraP: a code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    Article  CAS  Google Scholar 

  34. G. Kadim, R. Masrour, A. Jabar, Magnetocaloric, electronic, magnetic, optical and thermoelectric properties in antiferromagnetic semiconductor GdCrO3: Monte Carlo simulation and density functional theory. J. Cryst. Growth 581, 126509 (2022)

    Article  CAS  Google Scholar 

  35. V. Franco, J.S. Blázquez, A. Conde, Field dependence of the magnetocaloric effect in materials with a second order phase transition: a master curve for the magnetic entropy change. Appl. Phys. Lett. 89(22), 222512 (2006)

    Article  Google Scholar 

  36. A.L. Lima, A.O. Tsokol, K.A. Gschneidner Jr., V.K. Pecharsky, T.A. Lograsso, D.L. Schlagel, Magnetic properties of single-crystal DyAl2. Phys. Rev. B 72(2), 024403 (2005)

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Ethics declarations

Conflict of interest

No conflict interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masrour, R., Kadim, G. & Ellouze, M. Magnetic, thermoelectric properties and magnetocaloric effect of Pr0.7Ba0.3MnO3 perovskite: experimental, DFT calculation and Monte Carlo simulations. J. Korean Ceram. Soc. 61, 411–418 (2024). https://doi.org/10.1007/s43207-023-00343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00343-z

Keywords

Navigation