Skip to main content

Advertisement

Log in

Microstructure and physical properties of SiCf/SiC composites fabricated by the CVI/LSI/PIP hybrid process

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

The mechanical properties of SiCf/SiC composites depend on the microstructure of matrix, fiber and interphase. Therefore, the technology to control the microstructure of those components can be key to determining its application in the future. In this study, SiCf/SiC composite with a fiber volume fraction of 30 vol% was prepared using the CVI/LSI/PIP hybrid process. The apparent density and residual silicon of the prepared composite were measured to be 2.77 g/cm3 and 2 vol%, respectively. As a result of evaluatingthe tensile strength, the elastic modulus, PLS, and UTS of the SiCf/SiC composite at 1400 °C were measured to be 152.3 GPa, 125.1 MPa, and 144.1 MPa, respectively. Additionally, the crystallinity of the PyC interphase in SiCf/SiC composites was quantified using HRTEM, and the effect of the microstructure of the SiC matrix and PyC interphase on the mechanical properties discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Wang, F. Liu, H. Wang, H. Li, Y. Gou, A review of third generation SiC fibers and SiCf/SiC composites. J. mater. sci. technol. 35, 2743–2750 (2019). https://doi.org/10.1016/j.jmst.2019.07.020

    Article  CAS  Google Scholar 

  2. D. Wei, L. Lei, J. Yinghou, W. Sontao, L. Xingchen, B. Sunden, Heat transfer in the trailing region of gas turbines – A state-of-the-art review. Appl. Therm. Eng. 199, 117614 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117614

    Article  Google Scholar 

  3. M. Chen, H. Qiu, W. Xie, B. Zhang, S. Liu, W. Luo, X. Ma, Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine. IOP Conf Ser Mater Sci Eng 678, 012043 (2019). https://doi.org/10.1088/1757-899X/678/1/012043

    Article  CAS  Google Scholar 

  4. P.G. Karandikar, T.-W. Chou, Damage Development and Moduli Reductions in Nicalon-Calcium Aluminosilicate Composites under Static Fatigue and Cyclic Fatigue. J. Am. Ceram. 76, 1720–1728 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06640.x

    Article  CAS  Google Scholar 

  5. A.G. Evans, F.W. Zok, The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 29, 3857–3896 (1994). https://doi.org/10.1007/BF00355946

    Article  CAS  Google Scholar 

  6. J.D. Arregui-Mena, T. Koyanagi, E. Cakmak, C.M. Petrie, W.-J. Kim, D.J. Kim, C.P. Deck, C. Sauder, J. Braun, Y. Katoh, Qualitative and quantitative analysis of neutron irradiation effects in SiC/SiC composites using X-ray computed tomography. Compos. B Eng. 238, 109896 (2022). https://doi.org/10.1016/j.compositesb.2022.109896

    Article  CAS  Google Scholar 

  7. W. Yang, T. Noda, H. Araki, J. Yu, A. Kohyama, Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI–SiC matrix composites. Mater. Sci. Eng. C 345, 28–35 (2003). https://doi.org/10.1016/S0921-5093(02)00468-9

    Article  Google Scholar 

  8. S.Y. Kim, I.S. Han, S.K. Woo, K.S. Lee, D.K. Kim, Wear-mechanical properties of filler-added liquid silicon infiltration C/C–SiC composites. Mater. Des. 44, 107–113 (2013). https://doi.org/10.1016/j.matdes.2012.07.064

    Article  CAS  Google Scholar 

  9. J. W. Han, D. J. Kim, S.-Y. KIM, W.-J. Kim, C. Park, J. Y. Park, Influence of CVI process time on the C-ring strength of hybrid SiCf/SiC composites fabricated by CVI–LSI. J Korean Ceram. 60 261–271 (2023). https://doi.org/10.1007/s43207-022-00260-7

  10. K.-M. Kim, Y.S. Hahn, S.-M. Lee, K. Choi, J.-H. Lee, Mechanical properties of Cf/SiC composite using a combined process of chemical vapor infiltration and precursor infiltration pyrolysis. J. Korean Ceram. Soc. 55, 392–399 (2018). https://doi.org/10.4191/kcers.2018.55.4.11

    Article  CAS  Google Scholar 

  11. Y.S. Jeong, K. Choi, H.G. Yoon, Microstructural control of pyrolytic carbon layer deposited from methane by isotropic chemical vapor infiltration. J. Korean Ceram. Soc. 56, 291–297 (2019). https://doi.org/10.4191/kcers.2019.56.3.09

    Article  CAS  Google Scholar 

  12. N. Orlovskaya, M. Lugovy, F. Ko, S. Yarmolenko, J. Sankar, J. Kuebler, SiC/SiCwf Laminates: design, manufacturing, mechanical PROPERTIES. Compos. B Eng. 37, 524–529 (2006). https://doi.org/10.1016/j.compositesb.2006.02.022

    Article  CAS  Google Scholar 

  13. K.M. Kim, J.-W. Seo, K. Choi, Improvement of densification uniformity of carbon/silicon carbide composites during chemical vapour infiltration. Int. J. Nanotechnol. 15, 555–567 (2018). https://doi.org/10.1504/IJNT.2018.096346

    Article  CAS  Google Scholar 

  14. J.-W. Seo, K. Choi, Application of CFD simulation to silicon carbide deposition for nozzles with funnel. J. Korean Ceram. 58, 184–191 (2021). https://doi.org/10.1007/s43207-020-00082-5

    Article  CAS  Google Scholar 

  15. J.-M. Koo, K.H. Kim, Y.S. Han, Fabrication and characterization of Cf/SiC composite with bn interphase coated by wet chemical process. J. Korean Inst. Surf. Eng. 50, 523–530 (2017). https://doi.org/10.5695/JKISE.2017.50.6.523

    Article  CAS  Google Scholar 

  16. K. H. Kim, K. Choi, Y. S. Han, S. Nahm, S.-M. Lee, High-temperature cyclic fatigue in air of SiCf/SiC ceramic matrix composite with a pyrolytic carbon interface. HTHP. 50, 325–334 (2021). https://doi.org/10.32908/hthp.v50.1139

  17. R. Liu, F. Wang, J. Zhang, J. Chen, F. Wan, Y. Wang, Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes. Ceram. Int. 47, 26971–26977 (2021). https://doi.org/10.1016/j.ceramint.2021.06.110

    Article  CAS  Google Scholar 

  18. J.C. Margiotta, D. Zhang, D.C. Nagle, C.E. Feeser, Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure. J. Mater. Res. 23, 1237–1248 (2008). https://doi.org/10.1557/JMR.2008.0167

    Article  CAS  Google Scholar 

  19. Y.J. Joo, S.H. Joo, C.K. Youn, Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block. J. Korean Cryst. Growth Cryst. Technol. 30, 271–276 (2020). https://doi.org/10.6111/JKCGCT.2020.30.6.271

    Article  Google Scholar 

  20. T.J. Pirzada, S. Singh, R.D. Meyere, P. Earp, M. Galano, T.J. Marrow, Effects of polymer infiltration processing (PIP) temperature on the mechanical and thermal properties of Nextel 312 fibre SiCO ceramic matrix composites. Compos. Part A Appl. 140, 106197 (2021). https://doi.org/10.1016/j.compositesa.2020.106197

    Article  CAS  Google Scholar 

  21. P. Toth, Nanostructure quantification of turbostratic carbon by HRTEM image analysis: State of the art, biases, sensitivity and best practices. Carbon 178, 688–707 (2021). https://doi.org/10.1016/j.carbon.2021.03.043

    Article  CAS  Google Scholar 

  22. P. Ruz, S. Banerjee, M. Pandey, V. Sudarsan, P.U. Sastry, R.J. Kshirsagar, Structural evolution of turbostratic carbon: Implications in H2 storage. Solid State Sci. 62, 105–111 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.10.017

    Article  CAS  Google Scholar 

  23. R. Liu, Y. Chi, L. Fang, Z. Tang, Z. Tang, Synthesis of Carbon Nanowall by Plasma-Enhanced Chemical Vapor Deposition Method. J. Nanosci. Nanotechnol. 14, 1647–1657 (2014). https://doi.org/10.1166/jnn.2014.8905

    Article  CAS  Google Scholar 

  24. P. J. Meadows, E. L. Honorato, P. Xiao, Fluidized Bed Chemical Vapor Deposition of Pyrolytic Carbon - II. Effect of Deposition Conditions on Anisotropy. Carbon 47, 251–62 (2009). https://doi.org/10.1016/j.carbon.2008.10.003

  25. M. Seyring, A. Simon, I. Voigt, U. Ritter, M. Rettenmayr, Quantitative crystallographic analysis of individual carbon nanofibers using high resolution transmission electron microscopy and electron diffraction. Carbon 116, 347–355 (2017). https://doi.org/10.1016/j.carbon.2017.01.107

    Article  CAS  Google Scholar 

  26. K. Kamei, T. Shimizu, K. Harano, E. Nakamura, Aryl radical addition to curvatures of carbon nanohorns for single-molecule-level molecular imaging. Bull. Chem. Soc. Jpn 93, 1603–1608 (2020). https://doi.org/10.1246/bcsj.20200232

    Article  CAS  Google Scholar 

  27. J. Kabel, T.E.J. Edwards, A. Sharama, J. Michler, P. Hosemann, Direct observation of the elasticity-texture relationship in pyrolytic carbon via in situ micropillar compression and digital image correlation. Carbon 182, 571–584 (2021). https://doi.org/10.1016/j.carbon.2021.06.045

    Article  CAS  Google Scholar 

  28. P. Toth, A.B. Palotas, E.G. Eddings, R.T. Whitaker, J.S. Lighty, A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot I. Improved measurement of interlayer spacing. Combust. Flame 160, 909–919 (2013). https://doi.org/10.1016/j.combustflame.2013.01.002

    Article  CAS  Google Scholar 

  29. K. Yehliu, R. L. Vander Wal, A. L. Boehman, Development of an HRTEM image analysis method to quantify carbon nanostructure. Combust. Flame 158, 1837–1851 (2011). https://doi.org/10.1016/j.combustflame.2011.01.009

  30. C.A. Wang, T. Huddle, E.H. Lester, J.P. Mathews, Quantifying curvature in high-resolution transmission electron microscopy lattice fringe micrographs of coals. Energy Fuels 30, 2694–2704 (2016). https://doi.org/10.1021/acs.energyfuels.5b02907

    Article  CAS  Google Scholar 

  31. J.M. Parente, P. Santos, S. Valvez, M.P. Silva, P.N.B. Reis, Fatigue behaviour of graphene composites: an overview. Procedia Struct. Integr. 5, 282–293 (2020). https://doi.org/10.1016/j.prostr.2020.04.033

    Article  Google Scholar 

  32. C. Droillard, J. Lamon, Fracture toughness of 2-D Woven SiC/SiC CVI-composites with multilayered interphases. J. Am. Ceram. 79, 849–858 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08516.x

    Article  CAS  Google Scholar 

  33. F. Rebillat, J. Lamon, The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 48, 4609–4618 (2000). https://doi.org/10.1016/S1359-6454(00)00247-0

    Article  CAS  Google Scholar 

  34. Y. Zhou, T. Ye, L. Ma, Z. Lu, Z. Yang, S. Liu, Investigation on Cf/PyC interfacial properties of C/C composites by the molecular dynamics simulation method. Mater. 25, 679 (2019). https://doi.org/10.3390/ma12040679

    Article  CAS  Google Scholar 

  35. R.K. Goldberg, A.S. Almansour, R.M. Sullivan, Analytical simulation of effects of local mechanisms on tensile response of ceramic matrix minicomposites. J. Eur. Ceram. 42, 6846–6864 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.07.042

    Article  CAS  Google Scholar 

  36. L. Li, Temperature-dependent proportional limit stress of SiC/SiC fiber-reinforced ceramic-matrix composites. High Temp. Mater. Process. 39, 0052 (2020). https://doi.org/10.1515/htmp-2020-0052

    Article  CAS  Google Scholar 

  37. A. Haboub, H.A. Bale, J.R. Nasiatka, B.N. Cox, D.B. Marshall, R.O. Ritchie, A.A. MacDowell, Tensile testing of materials at high temperatures above 1700 °C with in-situ synchrotron X-ray micro-tomography. Rev. Sci. Instrum. 85, 083702 (2014). https://doi.org/10.1063/1.4892437

    Article  CAS  Google Scholar 

  38. K. Shimoda, T. Hinoki, Effects of fiber volume fraction on the densification and mechanical properties of unidirectional SiCf/SiC-matrix composites. J. Eur. Ceram. 41, 1163–1170 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.024

    Article  CAS  Google Scholar 

  39. H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, R.O. Ritchie, Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600°C. Nat. Mater. 12, 40–46 (2013). https://doi.org/10.1038/nmat3497

    Article  CAS  Google Scholar 

  40. J.Y. Park, D.J. Kim, H.G. Lee, W.-J. Kim, Fabrication and evaluation of C-ring strength of SiCf/SiC composites tube. J. Korean Ceram. 58, 718–727 (2021). https://doi.org/10.1007/s43207-021-00146-0

    Article  CAS  Google Scholar 

  41. J. A. Di Carlo, H.-M. Yun, G. N. Morscher, R. T. Bhatt, SiCf/SiC composites for 1,600°C and above. In: Bansal NP (eds) Handbook of ceramic composites. Kluwer Academic Publishers, Boston, pp 77–98 (2005). https://doi.org/10.1007/0-387-23986-3_4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoon Choi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, YS., Jang, MH., Kim, JW. et al. Microstructure and physical properties of SiCf/SiC composites fabricated by the CVI/LSI/PIP hybrid process. J. Korean Ceram. Soc. 61, 161–169 (2024). https://doi.org/10.1007/s43207-023-00338-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00338-w

Keywords

Navigation