Skip to main content
Log in

Enhancement of thermal-electrical like response by flexoelectric effect in sodium bismuth titanate bilayer ceramics with compositional inhomogeneity

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Owing to the difference in the thermal expansion coefficients of the ceramics with different compositions, ceramics with a compositional gradient generate the macroscopic strain gradient during sintering process, which may generate a macroscopic internal electric potential by the flexoelectric effect. Here we show that the bilayer Na0.5Bi0.5TiO3-based ceramics with high electrical conductivity exhibits a thermal-electrical like response, which are larger than that of the single-layer ceramics. We propose that if the surfaces and the interface layer of the bilayer ceramics are inhomogeneously deformed under the influence of the temperature and compositional gradient, the bilayer ceramics can generate the flexoelectric-like response. The coupling of conductivity with this response results in the thermal-electrical like response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C. Gayner, K.K. Kar, Prog Mater. Sci. 83, 330–382 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002

    Article  CAS  Google Scholar 

  2. J.Q. He, M.G. Kanatzidis, V.P. Dravid, Mater. Today. 16(5), 166–176 (2013). https://doi.org/10.1016/j.mattod.2013.05.004

    Article  CAS  Google Scholar 

  3. A. Ray, B. Nayak, P. Elorika, R. Barman, A. Sharmistha, T. Badapanda, S. Anwar, J. Korean Ceram. Soc. (2023). https://doi.org/10.1007/s43207-023-00303-7

    Article  Google Scholar 

  4. A. Shakouri, Annu. Rev. Mater. Res. 41(1), 399–431 (2011). https://doi.org/10.1146/annurev-matsci-062910-100445

    Article  CAS  Google Scholar 

  5. G.J. Snyder, E.S. Toberer, Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  CAS  Google Scholar 

  6. L.E. Bell, Science. 321(5895), 1457–1461 (2008). https://doi.org/10.1126/science.1158899

    Article  CAS  Google Scholar 

  7. A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P.D. Yang, Nature. 451(7175), 163–167 (2008). https://doi.org/10.1038/nature06381

    Article  CAS  Google Scholar 

  8. D.H. Kim, H.-S. Kim, J.U. Rahman, W.H. Shin, T. Kim, S.-. Kim, J. Korean Ceram. Soc. 59(1), 64–69 (2021). https://doi.org/10.1007/s43207-021-00153-1

    Article  CAS  Google Scholar 

  9. J.W. Fergus, J. Eur, Ceram. Soc. 32(3), 525–540 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.007

    Article  CAS  Google Scholar 

  10. M. Hamid Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M. Haji Hassan, M.B. Ali Bashir, M. Mohamad, Renew. Sustainable Energy Rev. 30, 337–355 (2014). https://doi.org/10.1016/j.rser.2013.10.027

    Article  Google Scholar 

  11. P. Guggilla, A.K. Batra, J.R. Currie, M.D. Aggarwal, M.A. Alim, R.B. Lal, Mater. Lett. 60(16), 1937–1942 (2006). https://doi.org/10.1016/j.matlet.2005.05.086

    Article  CAS  Google Scholar 

  12. R.W. Whatmore, Rep. Prog Phys. 49(12), 1335–1386 (1986). https://doi.org/10.1088/0034-4885/49/12/002

    Article  CAS  Google Scholar 

  13. H. Song, J.P. Goud, J. Ye, W. Jung, J. Ji, J. Ryu, J. Korean Ceram. Soc. (2023). https://doi.org/10.1007/s43207-023-00305-5

    Article  Google Scholar 

  14. P. Chen, H.F. Zhang, B.J. Chu, Phys. Rev. Mater. 2(3) (2018). https://doi.org/10.1103/PhysRevMaterials.2.034401

  15. P. Chen, W.F. Zhou, H.F. Zhang, Q. Pan, X.T. Zhang, B.J. Chu, ACS Appl. Electron. Mater. 1(4), 478–484 (2019). https://doi.org/10.1021/acsaelm.8b00107

    Article  CAS  Google Scholar 

  16. M. Li, M.J. Pietrowski, R.A. De Souza, H.R. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, Nat. Mater. 13(1), 31–35 (2014). https://doi.org/10.1038/nmat3782

    Article  CAS  Google Scholar 

  17. M. Li, H.R. Zhang, S.N. Cook, L.H. Li, J.A. Kilner, I.M. Reaney, D.C. Sinclair, Chem. Mater. 27(2), 629–634 (2015). https://doi.org/10.1021/cm504475k

    Article  CAS  Google Scholar 

  18. F. Yang, M. Li, L.H. Li, P. Wu, E. Pradal-Velázque, D.C. Sinclair, J. Mater. Chem. A 5(41), 21658–21662 (2017). https://doi.org/10.1039/c7ta07667c

    Article  CAS  Google Scholar 

  19. F. Yang, M. Li, L.H. Li, P. Wu, E. Pradal-Velázquez, D.C. Sinclair, J. Mater. Chem. A 6(13), 5243–5254 (2018). https://doi.org/10.1039/c7ta09245h

    Article  CAS  Google Scholar 

  20. R. Xu, P. Chen, C.W. Chen, Y. Hou, B.J. Chu, Ceram. Int. 48(19), 27568–27574 (2022). https://doi.org/10.1016/j.ceramint.2022.06.051

    Article  CAS  Google Scholar 

  21. M. Botea, I. Pintilie, V.-A. Surdu, C.-A. Stanciu, R.-D. Truşcă, B.Å. Vasile, R. Patru, A.-C. Ianculescu, L. Pintilie, J. Mater. Res. Technol. 12, 2085–2103 (2021). https://doi.org/10.1016/j.jmrt.2021.04.011

    Article  CAS  Google Scholar 

  22. T. Frömling, S. Steiner, A. Ayrikyan, D. Bremecker, M. Dürrschnabel, L. Molina-Luna, H.-J. Kleebe, H. Hutter, K.G. Webber, M. Acosta, J. Mater. Chem. C 6(4), 738–744 (2018). https://doi.org/10.1039/c7tc03975a

    Article  CAS  Google Scholar 

  23. A. Ayrikyan, V. Rojas, L. Molina-Luna, M. Acosta, J. Koruza, K.G. Webber, IEEE Trans. Ultrason. Eng. 62(6), 997–1006 (2015). https://doi.org/10.1109/TUFFC.2014.006673

    Article  Google Scholar 

  24. X.T. Zhang, Q. Pan, D.X. Tian, W.F. Zhou, P. Chen, H.F. Zhang, B.J. Chu, Phys. Rev. Lett. 121(5), 057602 (2018). https://doi.org/10.1103/PhysRevLett.121.057602

    Article  Google Scholar 

  25. A. Biancoli, C.M. Fancher, J.L. Jones, D. Damjanovic, Nat. Mater. 14(2), 224–229 (2015). https://doi.org/10.1038/nmat4139

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (No. 51972297 and 51672261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Yong Jeong or Baojin Chu.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Xia, B., Jeong, DY. et al. Enhancement of thermal-electrical like response by flexoelectric effect in sodium bismuth titanate bilayer ceramics with compositional inhomogeneity. J. Korean Ceram. Soc. 61, 91–96 (2024). https://doi.org/10.1007/s43207-023-00326-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00326-0

Keywords

Navigation