Skip to main content
Log in

Surface passivation of α-Al2O3 powder using water vapor to achieve consistent slurry viscosity

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

Based on the significant viscosity variations in the aqueous α-Al2O3 slurries depending on the powder pre-treatments and slurry retention, this study examined the surface chemistry of α-Al2O3 to determine the factors affecting viscosity. An aqueous slurry prepared with the α-Al2O3 powder exposed to air revealed a much higher viscosity than those prepared with heat treatment or exposure to moisture; the opposite trend was observed for a non-aqueous slurry. Surface analysis using Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with viscosity measurements showed that the viscosity depended strongly on the amount of hydroxyl ions and carbonates adsorbed on the powder surface. Through surface passivation using water vapor at 750 °C for α-Al2O3 powder, the viscosity of aqueous slurry decreased significantly with less variation, owing to the increased amount of firmly attached isolated hydroxyl ions on the α-Al2O3 surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available upon request.

References

  1. S. Fujiwara, Y. Tamura, H. Maki, N. Azuma, Y. Takeuchi, Development of new high-purity alumina, Sumitomo Kagaku 2007-I Report 3, 1–10 (2007).

  2. T. Shirai, H. Watanabe, M. Fuji, M. Takahashi, Structural properties and surface characteristics on aluminum oxide powders, Nogoya Institute of Technology Repository System 9, 23–31 (2009).

  3. K.A. Evans, The manufacture of alumina and its use in ceramics and related applications. Key Eng. Mater. 489, 122–124 (1996)

    Google Scholar 

  4. A. Moradkhani, H. Baharvandi, A. Naserifar, Effect of sintering temperature on the grain size and mechanical properties of Al2O3-SiC nanocomposites. J. Korean Ceram. Soc. 56, 256–268 (2019). https://doi.org/10.4191/kcers.2019.56.3.01

    Article  CAS  Google Scholar 

  5. C.Y. Lee, S. Lee, J.H. Ha, J. Lee, I.H. Song, K.S. Moon, Effect of the processing conditions of reticulated porous alumina on the compressive strength. J. Korean Ceram. Soc. 58, 495–506 (2021). https://doi.org/10.1007/s43207-021-00128-2

    Article  CAS  Google Scholar 

  6. S.G. Jeong, C. Wang, J.H. Kim, D.H. Yoon, Dielectric properties of silicon-doped α-alumina derived from sol-gel process. J. Korean Ceram. Soc. 59, 671–678 (2022). https://doi.org/10.1007/s43207-022-00206-z

    Article  CAS  Google Scholar 

  7. A.M. Tsabit, D.H. Yoon, Review on transparent polycrystalline ceramics. J. Korean Ceram. Soc. 59, 1–24 (2022). https://doi.org/10.1007/s43207-021-00140-6

    Article  CAS  Google Scholar 

  8. Y.S. Jung, K.W. Min, J.H. Choi, J.S. Yoon, W.B. Im, H.J. Kim, Plasma-resistant characteristics according to sintering conditions of CaO-Al2O3-SiO2 glass coating layer. J. Korean Ceram. Soc. 59, 86–93 (2022). https://doi.org/10.1007/s43207-021-00149-x

    Article  CAS  Google Scholar 

  9. A. Sakthisabarimoorthi, M.J. Kang, D.H. Yoon, Modification of a low-soda easy-sintered α-Al2O3 powder for the application in semiconductor/display production equipment. Korean J. Chem. Eng. 38, 2541–2548 (2021). https://doi.org/10.1007/s11814-021-0915-0

    Article  CAS  Google Scholar 

  10. M.J. Kang, D.H. Yoon, Effects of impurities on the slip viscosity and sintered properties of low-soda easy-sintered α-alumina. J. Korean Ceram. Soc. 59, 595–603 (2022). https://doi.org/10.1007/s43207-022-00192-2

    Article  CAS  Google Scholar 

  11. P.J. Eng, T.P. Trainor, G.E. Brown Jr., G.A. Waychunas, M. Newville, S.R. Sutton, M.L. Rivers, Structure of the hydrated α-Al2O3 (0001) surface. Science 288, 1029–1033 (2000). https://doi.org/10.1126/science.288.5468.1029

    Article  CAS  Google Scholar 

  12. M.R. Alexander, G.E. Thompson, G. Beamson, Characterization of the oxide/hydroxide surface of aluminum using X-ray photoelectron spectroscopy: a procedure for curve fitting the O 1s core level. Surf. Interface Anal. 29, 468–477 (2000). https://doi.org/10.1002/1096-9918(200007)29:7%3c468::AID-SIA890%3e3.0.CO;2-V

    Article  CAS  Google Scholar 

  13. J. Toofan, P.R. Watson, The termination of the α-Al2O3 (0001) surface: a LEED crystallography determination. Surf. Sci. 401, 162–172 (1998). https://doi.org/10.1016/S0039-6028(97)01031-5

    Article  CAS  Google Scholar 

  14. K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, First-principles molecular dynamics simulations of H2O on α-Al2O3 (0001). J. Phys. Chem. 104, 5527–5540 (2000). https://doi.org/10.1021/jp000040p

    Article  CAS  Google Scholar 

  15. K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, The chemistry of water on alumina surfaces: reaction dynamics from first principles. Science 282, 265–268 (1998). https://doi.org/10.1126/science.282.5387.265

    Article  CAS  Google Scholar 

  16. P. Raharjo, C. Ishizaki, K. Ishizaki, Surface hydration states of high purity α-Al2O3 powders. J. Ceram. Soc. Jpn. 108, 449–455 (2000). https://doi.org/10.2109/jcersj.108.1257_449

    Article  CAS  Google Scholar 

  17. H. Du, C.T. Williams, A.D. Ebner, J.A. Ritter, In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem. Mater. 22, 3519–3526 (2010). https://doi.org/10.1021/cm100703e

    Article  CAS  Google Scholar 

  18. B. Ludwig, T.T. Burke, Infrared spectroscopy studies of aluminum oxide and metallic aluminum powders. part I: thermal dehydration and decomposition. Powders 1, 47–61 (2022). https://doi.org/10.3390/powders1010005

    Article  Google Scholar 

  19. B. Ludwig, Infrared spectroscopy studies of aluminum oxide and metallic aluminum powders, part II: adsorption reactions of organofunctional silanes. Powders 1, 75–87 (2022). https://doi.org/10.3390/powders1020007

    Article  Google Scholar 

  20. D.B. Mawhinney, J.A. Rossin, K. Gerhart, J.T. Yates Jr., Infrared spectroscopic study of surface diffusion to surface hydroxyl groups in Al2O3: 2-chloroethylethyl sulfide adsorption site selection. Langmuir 16, 2237–2241 (2000). https://doi.org/10.1021/la990604k

    Article  CAS  Google Scholar 

  21. J.B. Peri, A model for the surface of γ-alumina. J. Phys. Chem. 69, 220–230 (1965)

    Article  CAS  Google Scholar 

  22. A.A. Tsyganenko, V.N. Filimonov, Infrared spectra of surface hydroxyl groups and crystalline structure of oxides. J. Mol. Struct. 19, 579–589 (1973). https://doi.org/10.1016/0022-2860(73)85136-1

    Article  CAS  Google Scholar 

  23. C. Morterra, G. Ghiotti, F. Boccuzzi, S. Coluccia, An infrared spectroscopy investigation of the surface properties of magnesium aluminate spinel. J. Catal. 51, 299–313 (1978). https://doi.org/10.1016/0021-9517(78)90268-3

    Article  CAS  Google Scholar 

  24. Z. Zecchina, S. Coluccia, C. Morterra, Infrared spectra of molecules adsorbed on oxide surfaces. Appl. Spectrosc. Rev. 21, 259–310 (1985). https://doi.org/10.1080/05704928508060432

    Article  CAS  Google Scholar 

  25. H. Knözinger, P. Ratnasamy, Catalytic aluminas: surface models and characterization of surface sites. Catal. Rev. Sci. Eng. 17, 31–70 (1978). https://doi.org/10.1080/03602457808080878

    Article  Google Scholar 

  26. G. Busca, V. Lorenzelli, G. Ramis, R.J. Willey, Surface sites on spinel-type and corundum-type metal oxide powders. Langmuir 9, 1492–1499 (1993)

    Article  CAS  Google Scholar 

  27. G. Della Gatta, B. Fubini, G. Ghiotti, C. Morterra, The chemisorption of carbon monoxide on various transition aluminas. J. Catal. 43, 90–98 (1976). https://doi.org/10.1016/0021-9517(76)90296-7

    Article  CAS  Google Scholar 

  28. M.J. Kang, D.H. Yoon, Effects of surface hydroxyl ions on the color of sintered Al2O3 characterized by X-ray photoelectron and infrared spectroscopy. J. Eur. Ceram. Soc. 42, 7508–7515 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.09.016

    Article  CAS  Google Scholar 

  29. G. Busca, V. Lorenzelli, Infrared spectroscopic identification of species arising from reactive adsorption of carbon dioxide on metal oxide surfaces. Mater. Chem. 7, 89–126 (1982). https://doi.org/10.1016/0390-6035(82)90059-1

    Article  CAS  Google Scholar 

  30. H.A. Prescott, Z.J. Li, E. Kemnitz, A. Trunschke, J. Deutsch, H. Lieske, A. Auroux, Application of calcined Mg-Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid-base properties. J. Catal. 234, 119–130 (2005). https://doi.org/10.1016/j.jcat.2005.06.004

    Article  CAS  Google Scholar 

  31. A.A. Khassin, T.M. Yurieva, V.V. Kaichev, V.I. Bukhtiyarov, A.A. Budneva, E.A. Paukshtis, V.N. Parmon, Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies. J. Mol. Catal. A Chem. 23, 189–204 (2001). https://doi.org/10.1016/S1381-1169(01)00216-3

    Article  Google Scholar 

  32. P. Mikkola, P. Ylha, E. Levanen, J.B. Rosenholm, Effect of impurities on dispersion properties of alpha-alumina powder. Ceram. Int. 30, 291–299 (2004). https://doi.org/10.1016/S0272-8842(03)00102-0

    Article  CAS  Google Scholar 

  33. J. Kiennemann, C. Pagnoux, T. Chartier, J.F. Baumard, Influence of impurities on dispersion properties of Bayer alumina. J. Am. Ceram. Soc. 87, 2175–2182 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07487.x

    Article  CAS  Google Scholar 

  34. S.I. Bae, S. Baik, Critical concentration of MgO for the prevention of abnormal grain growth in alumina. J. Am. Ceram. Soc. 77, 2499–2504 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04634.x

    Article  CAS  Google Scholar 

  35. B.P. Singh, R. Menchavez, C. Takai, M. Fuji, M. Takahashi, Stability of dispersions of colloidal particles in aqueous suspension. J. Colloid Interf. Sci. 291, 181–186 (2005). https://doi.org/10.1016/j.jcis.2005.04.091

    Article  CAS  Google Scholar 

  36. Y. Takao, T. Hotta, M. Naito, N. Shinohara, M. Okumiya, K. Uematsu, Microstructure of alumina compact body made by slip casting. J. Eur. Ceram. Soc. 22, 397–401 (2002). https://doi.org/10.1016/S0955-2219(01)00307-7

    Article  CAS  Google Scholar 

  37. S.M. Olhero, J.M.F. Ferreira, Particle segregation phenomena occurring during the slip casting process. Ceram. Int. 28, 377–386 (2002). https://doi.org/10.1016/S0272-8842(01)00105-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korean Ministry of Trade, Industry, and Energy (20012911) and the Nano & Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2022M3H4A3095298). The authors also thank the Research Center for Natural Products and Medical Materials (RCNM) for technical support regarding the FT-IR and XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang-Hyok Yoon.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, E.C., Yoon, DH. Surface passivation of α-Al2O3 powder using water vapor to achieve consistent slurry viscosity. J. Korean Ceram. Soc. 60, 935–949 (2023). https://doi.org/10.1007/s43207-023-00317-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-023-00317-1

Keywords

Navigation